Given the task, the provided mathematical expression and table seem to be attempting to illustrate a proportional relationship, but the formatting and expression are unclear. Here is a clear and logical reformatting of the content:

Determine which of the following pairs are proportional:

[tex]\[ \frac{15 \text{ cm}}{3} = 5 \text{ cm} \][/tex]

[tex]\[
\begin{tabular}{|c|c|}
\hline
$5 \text{ cm} \quad (3) \quad 15 \text{ cm}$ \\
$9 \text{ cm} \quad (3) \quad 27 \text{ cm}$ \\
$2 \text{ cm} \quad (3) \quad 6 \text{ cm}$ \\
$11 \text{ cm} \quad (3) \quad 33 \text{ cm}$ \\
\hline
\end{tabular}
\][/tex]

In this table, verify if each pair follows the proportional relationship:

[tex]\[
\frac{\text{Second Value}}{\text{First Value}} = 3
\][/tex]

Determine which pairs satisfy this condition.



Answer :

Certainly! Let's analyze the given proportion and options step-by-step.

The proportion we need to consider is:

[tex]\[ \frac{15 \text{ cm}}{5 \text{ cm}} = 3 \][/tex]

This means that for every 5 cm, we have 15 cm. The multiplicative factor here is [tex]\(3\)[/tex].

Now let's check each of the options to see which ones correctly match this proportion. Each option follows the format:

[tex]\[ \text{cm value} \times \text{multiplier} \stackrel{}{=} \text{result} \][/tex]

We need to verify if:

[tex]\[ \text{cm value} \times 3 = \text{result} \][/tex]

Let's analyze each option in the table one by one:

1. First Option:
[tex]\[ 5 \text{ cm} \times 3 = 15 \text{ cm} \][/tex]
This matches because [tex]\(5 \times 3 = 15\)[/tex].

2. Second Option:
[tex]\[ 9 \text{ cm} \times 3 = 27 \text{ cm} \][/tex]
This matches because [tex]\(9 \times 3 = 27\)[/tex].

3. Third Option:
[tex]\[ 2 \text{ cm} \times 3 = 6 \text{ cm} \][/tex]
This matches because [tex]\(2 \times 3 = 6\)[/tex].

4. Fourth Option:
[tex]\[ 11 \text{ cm} \times 3 = 33 \text{ cm} \][/tex]
This matches because [tex]\(11 \times 3 = 33\)[/tex].

So, all the given options correctly match the proportion, as they all validate the equation [tex]\( \text{cm value} \times 3 = \text{result} \)[/tex].

In conclusion, the following options correctly match the given proportion of [tex]\(\frac{15 \text{ cm}}{5 \text{ cm}} = 3\)[/tex]:

[tex]\[ (5 \text{ cm}, 3, 15 \text{ cm}) \][/tex]
[tex]\[ (9 \text{ cm}, 3, 27 \text{ cm}) \][/tex]
[tex]\[ (2 \text{ cm}, 3, 6 \text{ cm}) \][/tex]
[tex]\[ (11 \text{ cm}, 3, 33 \text{ cm}) \][/tex]