Select the correct answer from each drop-down menu.

\begin{tabular}{|r|r|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-1 & 7 \\
\hline
1 & 6 \\
\hline
3 & 5 \\
\hline
4 & 1 \\
\hline
6 & -1 \\
\hline
\end{tabular}

The values in the table define the function [tex]$f(x)$[/tex]. Two points that lie on the graph of [tex]$f^{-1}(x)$[/tex] are [tex]$(7,-1)$[/tex] and [tex]$\square$[/tex].



Answer :

To solve this problem, we need to identify two points that lie on the graph of the inverse function [tex]\( f^{-1}(x) \)[/tex].

Given the table of values for [tex]\( f(x) \)[/tex]:

[tex]\[ \begin{tabular}{|r|r|} \hline $x$ & $f(x)$ \\ \hline -1 & 7 \\ \hline 1 & 6 \\ \hline 3 & 5 \\ \hline 4 & 1 \\ \hline 6 & -1 \\ \hline \end{tabular} \][/tex]

For any given point [tex]\((a, b)\)[/tex] on the function [tex]\( f(x) \)[/tex], the corresponding point [tex]\((b, a)\)[/tex] will lie on the inverse function [tex]\( f^{-1}(x) \)[/tex].

From the table, one known point on [tex]\( f(x) \)[/tex] is [tex]\((x, f(x)) = (-1, 7)\)[/tex]. The corresponding point on [tex]\( f^{-1}(x) \)[/tex] will be [tex]\((7, -1)\)[/tex].

To find another point, we can simply choose another pair from the table. Let's choose [tex]\((1, 6)\)[/tex]. The corresponding point on [tex]\( f^{-1}(x) \)[/tex] will be [tex]\((6, 1)\)[/tex].

Thus, two points that lie on the graph of [tex]\( f^{-1}(x) \)[/tex] are:

[tex]\[ (7, -1) \text{ and } (6, 1) \][/tex]

So, the correct answer for the second point is [tex]\((6, 1)\)[/tex].