Question 1 of 5

Drag the numbers to the correct locations in the equation. Each number can be used more than once, but not all numbers will be used.

Miles recorded his height, in inches, from age 10 to age 18, as shown in the table.

\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline
Age, [tex]$x$[/tex] & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline
Height, [tex]$y$[/tex] & 54 & 58 & 61.5 & 64.5 & 68 & 70 & 73 & 74 & 74.5 \\
\hline
\end{tabular}

What is the square root function that best models this set of data?

[tex]\[ y = \square \sqrt{x - \square} + \square \][/tex]



Answer :

To develop a model for Miles' height, we need to find a square root function that fits the given data. The data for ages [tex]\(x\)[/tex] and heights [tex]\(y\)[/tex] is as follows:

| Age, [tex]\(x\)[/tex] | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|--------------|----|----|----|----|----|----|----|----|----|
| Height, [tex]\(y\)[/tex]| 54 | 58 | 61.5 | 64.5 | 68 | 70 | 73 | 74 | 74.5 |

The square root function we are using is of the form:
[tex]\[ y = a \sqrt{x} + b \][/tex]

To find the parameters [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that best fit the data, we use regression techniques. Through this process, we determine that the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:

[tex]\[ a = 19.730588892721208 \][/tex]
[tex]\[ b = -7.116197572583441 \][/tex]

Therefore, the equation of the square root function that best models the given data is:
[tex]\[ y = 19.730588892721208 \sqrt{x} - 7.116197572583441 \][/tex]

So, in the blank spaces of your problem:
[tex]\[ y = 19.730588892721208 \sqrt{x} - 7.116197572583441 \][/tex]