To determine the intensity of the earthquake, we start with the given formula:
[tex]\[ R = \log \left(\frac{I}{I_0}\right) \][/tex]
We are given:
- [tex]\( R = 6.1 \)[/tex]
- [tex]\( I_0 = 1 \)[/tex] (reference value)
Our goal is to find the intensity [tex]\( I \)[/tex].
Step 1: Plug the given values into the formula:
[tex]\[ 6.1 = \log \left(\frac{I}{1}\right) \][/tex]
Step 2: Simplify the equation since [tex]\( I_0 = 1 \)[/tex]:
[tex]\[ 6.1 = \log(I) \][/tex]
Step 3: Rewrite the equation in exponential form to solve for [tex]\( I \)[/tex]:
[tex]\[ I = 10^{6.1} \][/tex]
Step 4: Calculate [tex]\( 10^{6.1} \)[/tex]:
[tex]\[ 10^{6.1} \approx 1258925.411794166 \][/tex]
So, the intensity of the earthquake is approximately [tex]\( 1,258,925.41 \)[/tex].
Step 5: Express the intensity in scientific notation:
[tex]\[ 1258925.41 \approx 1.26 \times 10^6 \][/tex]
Thus, the correct answer is:
D. [tex]\( 1.26 \times 10^6 \)[/tex]