Solve the equation [tex]15t^2 + 7t - 4 = 0[/tex].

The solutions are of the form:
[tex]
t = \frac{N \pm \sqrt{D}}{M}
[/tex]

A. Use the quadratic formula to solve this equation and find the appropriate integer values of [tex]N[/tex], [tex]M[/tex], and [tex]D[/tex]. Do not simplify [tex]\sqrt{D}[/tex] yet.

[tex]
N = \boxed{}
[/tex]

[tex]
M = \boxed{}
[/tex]

[tex]
D = \boxed{}
[/tex]

B. Simplify the radical and the resulting solutions. Enter your answers as a list of integers or reduced fractions, separated with commas. Example: [tex]-5/2, -3/4[/tex]

[tex]
t = \boxed{}
[/tex]



Answer :

Let's solve the quadratic equation [tex]\( 15t^2 + 7t - 4 = 0 \)[/tex] using the quadratic formula.

### Part (A):
The quadratic formula is given by:
[tex]\[ t = \frac{ -b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

In this equation:
- [tex]\( a = 15 \)[/tex]
- [tex]\( b = 7 \)[/tex]
- [tex]\( c = -4 \)[/tex]

First, define the discriminant [tex]\( D \)[/tex]:
[tex]\[ D = b^2 - 4ac \][/tex]
[tex]\[ D = 7^2 - 4 \cdot 15 \cdot (-4) \][/tex]
[tex]\[ D = 49 + 240 \][/tex]
[tex]\[ D = 289 \][/tex]

The formula then becomes:
[tex]\[ t = \frac{-b \pm \sqrt{D}}{2a} \][/tex]

Let’s find the appropriate values of [tex]\( N \)[/tex], [tex]\( M \)[/tex], and [tex]\( D \)[/tex]:
- [tex]\( N = -b = -7 \)[/tex]
- [tex]\( M = 2a = 2 \cdot 15 = 30 \)[/tex]
- [tex]\( D = 289 \)[/tex]

So, the integer values are:
[tex]\[ N = -7 \][/tex]
[tex]\[ M = 30 \][/tex]
[tex]\[ D = 289 \][/tex]

### Part (B):
Now let's find the actual solutions by simplifying the radical and solving for [tex]\( t \)[/tex].

The quadratic formula in this case is:
[tex]\[ t = \frac{-7 \pm \sqrt{289}}{30} \][/tex]

Since [tex]\( \sqrt{289} = 17 \)[/tex], the equation becomes:
[tex]\[ t = \frac{-7 \pm 17}{30} \][/tex]

This gives us two solutions:
1. [tex]\( t_1 = \frac{-7 + 17}{30} = \frac{10}{30} = \frac{1}{3} \)[/tex]
2. [tex]\( t_2 = \frac{-7 - 17}{30} = \frac{-24}{30} = -\frac{4}{5} \)[/tex]

Therefore, the simplified solutions are:
[tex]\[ t = \frac{1}{3}, -\frac{4}{5} \][/tex]

So,
[tex]\[ t = \frac{1}{3}, -\frac{4}{5} \][/tex]