Write the product [tex]\sin (11x) \cos (x)[/tex] as a sum or difference of sines and/or cosines.

NOTE: Enter the exact, fully simplified answer.

[tex]\sin (11x) \cos (x) = \square[/tex]



Answer :

To express the product [tex]\(\sin(11x) \cos(x)\)[/tex] as a sum or difference of sines and/or cosines, we can make use of a specific trigonometric identity. The relevant identity is:

[tex]\[ \sin(A) \cos(B) = \frac{1}{2} \left[ \sin(A + B) + \sin(A - B) \right] \][/tex]

Here, [tex]\(A = 11x\)[/tex] and [tex]\(B = x\)[/tex].

Using the identity mentioned, we proceed as follows:

1. Identify [tex]\(A + B\)[/tex]:

[tex]\[ A + B = 11x + x = 12x \][/tex]

2. Identify [tex]\(A - B\)[/tex]:

[tex]\[ A - B = 11x - x = 10x \][/tex]

3. Substitute [tex]\(A + B\)[/tex] and [tex]\(A - B\)[/tex] back into the identity:

[tex]\[ \sin(11x) \cos(x) = \frac{1}{2} \left[ \sin(12x) + \sin(10x) \right] \][/tex]

Thus, the product [tex]\(\sin(11x) \cos(x)\)[/tex] can be written as:

[tex]\[ \sin(11x) \cos(x) = \frac{\sin(12x)}{2} + \frac{\sin(10x)}{2} \][/tex]

So, the final simplified answer is:

[tex]\[ \sin(11x) \cos(x) = \frac{1}{2} \sin(12x) + \frac{1}{2} \sin(10x) \][/tex]