Enter the correct answer in the box.

The function [tex]f(x) = 7^x + 1[/tex] is transformed to function [tex]g[/tex] through a horizontal compression by a factor of [tex]\frac{1}{3}[/tex]. What is the equation of function [tex]g[/tex]?

[tex]g(x) = 7^{3x} + 1[/tex]



Answer :

To find the equation of the transformed function [tex]\( g(x) \)[/tex] when the original function [tex]\( f(x) \)[/tex] undergoes a horizontal compression, we need to follow certain steps. The function we start with is:

[tex]\[ f(x) = 7^x + 1 \][/tex]

### Step-by-Step Solution:

1. Understand Horizontal Compression: A horizontal compression by a factor of [tex]\( \frac{1}{3} \)[/tex] means that the [tex]\( x \)[/tex]-values are multiplied by 3. This is because, in the general transformation [tex]\( f(bx) \)[/tex], if [tex]\( b > 1 \)[/tex], the function is compressed horizontally by the factor [tex]\( \frac{1}{b} \)[/tex].

2. Apply the Transformation: To compress the function [tex]\( f(x) \)[/tex] horizontally by a factor of [tex]\( \frac{1}{3} \)[/tex], we replace [tex]\( x \)[/tex] with [tex]\( 3x \)[/tex]. This process modifies the x-coordinate to achieve the desired compression.

3. Rewrite the Function:
[tex]\[ g(x) = f(3x) \][/tex]
So, substituting [tex]\( 3x \)[/tex] in place of [tex]\( x \)[/tex] in the original function [tex]\( f(x) \)[/tex], we get:

[tex]\[ g(x) = 7^{3x} + 1 \][/tex]

### Conclusion:

Hence, the equation of the transformed function [tex]\( g \)[/tex] is:

[tex]\[ g(x) = (7)^{3x} + 1 \][/tex]

This concludes the step-by-step transformation of the original function under the given horizontal compression.