\begin{tabular}{|c|c|}
\hline Polynomial Expression & Degree \\
\hline[tex]$x-9$[/tex] & 1 \\
\hline[tex]$-4x^2-6x+9$[/tex] & 2 \\
\hline[tex]$x^2-2x+9$[/tex] & 2 \\
\hline[tex]$-3$[/tex] & 0 \\
\hline[tex]$3x-2$[/tex] & 1 \\
\hline[tex]$6x+2$[/tex] & 1 \\
\hline[tex]$5$[/tex] & 0 \\
\end{tabular}



Answer :

Let's determine the degrees of each polynomial expression given in the table. The degree of a polynomial is the highest power of the variable [tex]\(x\)[/tex] in the polynomial.

1. Polynomial: [tex]\(x-9\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 1 ([tex]\(x^1\)[/tex]).
- Degree: 1

2. Polynomial: [tex]\(-4x^2 - 6x + 9\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 2 ([tex]\(x^2\)[/tex]).
- Degree: 2

3. Polynomial: [tex]\(x^2 - 2x + 9\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 2 ([tex]\(x^2\)[/tex]).
- Degree: 2

4. Polynomial: [tex]\(-3\)[/tex]
- This is a constant polynomial. The degree of a non-zero constant polynomial is 0.
- Degree: 0

5. Polynomial: [tex]\(3x - 2\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 1 ([tex]\(x^1\)[/tex]).
- Degree: 1

6. Polynomial: [tex]\(6x + 2\)[/tex]
- The highest power of [tex]\(x\)[/tex] in this polynomial is 1 ([tex]\(x^1\)[/tex]).
- Degree: 1

Now, let's add the missing degrees to the table:

[tex]\[ \begin{tabular}{|c|c|} \hline \text{Polynomial Expression} & \text{Degree} \\ \hline x-9 & 1 \\ \hline -4 x^2-6 x+9 & 2 \\ \hline x^2-2 x+9 & 2 \\ \hline -3 & 0 \\ \hline 3 x-2 & 1 \\ \hline 6 x+2 & 1 \\ \hline 5 & 0 \\ \hline \end{tabular} \][/tex]

To summarize, the degrees are as follows:
- [tex]\(x-9: 1\)[/tex]
- [tex]\(-4x^2 - 6x + 9: 2\)[/tex]
- [tex]\(x^2 - 2x + 9: 2\)[/tex]
- [tex]\(-3: 0\)[/tex]
- [tex]\(3x - 2: 1\)[/tex]
- [tex]\(6x + 2: 1\)[/tex]
- [tex]\(5: 0\)[/tex]

This completes our table and confirms the degrees of each polynomial.