Two friends, Piper and Jai, took summer jobs. Jai earned \[tex]$229.50 in 15 hours. The table below represents Piper's earnings in dollars and cents, $[/tex]y[tex]$, for working $[/tex]x[tex]$ hours.

\ \textless \ strong\ \textgreater \ Piper's Earnings\ \textless \ /strong\ \textgreater \

\begin{tabular}{|c|c|}
\hline
Hours $[/tex](x)[tex]$ & Earnings $[/tex](y)[tex]$ \\
\hline
2 & $[/tex]\[tex]$ 39$[/tex] \\
\hline
6 & [tex]$\$[/tex] 117[tex]$ \\
\hline
10 & $[/tex]\[tex]$ 195$[/tex] \\
\hline
14 & [tex]$\$[/tex] 273$ \\
\hline
\end{tabular}

Use the dropdown menu and answer-blank below to form a true statement.



Answer :

To determine the hourly rate of pay for Piper and Jai, we need to examine the information provided.

### Step 1: Calculate Piper's Hourly Rate of Pay

We have Piper's earnings and hours worked:

[tex]\[ \begin{array}{|c|c|} \hline \text{Hours } (x) & \text{Earnings } (y) \\ \hline 2 & \$39 \\ \hline 6 & \$117 \\ \hline 10 & \$195 \\ \hline 14 & \$273 \\ \hline \end{array} \][/tex]

To find Piper's hourly rate, we look at the change in earnings over the change in hours.
Using the earnings at the two endpoints:

[tex]\[ \Delta y = 273 - 39 = 234 \text{ dollars} \][/tex]
[tex]\[ \Delta x = 14 - 2 = 12 \text{ hours} \][/tex]

So, Piper’s hourly rate is:

[tex]\[ \text{Hourly rate} = \frac{\Delta y}{\Delta x} = \frac{234 \text{ dollars}}{12 \text{ hours}} = 19.5 \text{ dollars/hour} \][/tex]

### Step 2: Calculate Jai's Hourly Rate of Pay

Jai worked for 15 hours and earned [tex]$229.50. Hence, Jai's hourly rate is: \[ \text{Hourly rate} = \frac{\$[/tex]229.50}{15 \text{ hours}} = 15.3 \text{ dollars/hour}
\]

### Summary
- Piper’s hourly rate is 19.5 dollars per hour.
- Jai’s hourly rate is 15.3 dollars per hour.

Using these values, you can form true statements:
- Piper earns more per hour compared to Jai.
- Jai's hourly rate is 15.3 dollars per hour.
- Piper's hourly rate is 19.5 dollars per hour.