What is the solution of the inequality?

[tex]\[ 2(m+3) \ \textless \ -5 + 3m \][/tex]

A. [tex]\( m \ \textgreater \ 2 \)[/tex]

B. [tex]\( m \ \textless \ 11 \)[/tex]

C. [tex]\( m \ \textless \ -8 \)[/tex]

D. [tex]\( m \ \textgreater \ 11 \)[/tex]



Answer :

Let's solve the inequality step-by-step:

We are given the inequality:
[tex]\[ 2(m + 3) < -5 + 3m \][/tex]

First, distribute the 2 on the left side:
[tex]\[ 2m + 6 < -5 + 3m \][/tex]

Next, we want to get all terms involving [tex]\(m\)[/tex] on one side and constants on the other side. Let's subtract [tex]\(2m\)[/tex] from both sides:
[tex]\[ 6 < -5 + m \][/tex]

Now, add 5 to both sides to isolate [tex]\(m\)[/tex]:
[tex]\[ 11 < m \][/tex]

So, the solution to the inequality is:
[tex]\[ m > 11 \][/tex]

Given your choices, the correct answer is:
[tex]\[ m > 11 \][/tex]