Solve the following equation for [tex]$x$[/tex]:

[tex]0 = 3x^2 - 8x + 5[/tex]

A. [tex]x = 2, \frac{2}{3}[/tex]
B. [tex]x = \frac{3}{8}, \frac{3}{5}[/tex]
C. [tex]x = 1, \frac{5}{3}[/tex]
D. There are no real solutions.



Answer :

To solve the quadratic equation [tex]\(3x^2 - 8x + 5 = 0\)[/tex], we can follow these steps:

1. Identify the coefficients a, b, and c from the equation:
The given equation is of the form [tex]\(ax^2 + bx + c = 0\)[/tex].
Here, [tex]\(a = 3\)[/tex], [tex]\(b = -8\)[/tex], and [tex]\(c = 5\)[/tex].

2. Use the quadratic formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

3. Plug in the coefficients into the quadratic formula:
[tex]\[ x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \cdot 3 \cdot 5}}{2 \cdot 3} \][/tex]
Simplifying the expression inside the square root:
[tex]\[ x = \frac{8 \pm \sqrt{64 - 60}}{6} \][/tex]

4. Calculate the discriminant:
The discriminant is [tex]\(64 - 60 = 4\)[/tex].

5. Evaluate the square root of the discriminant:
[tex]\[ \sqrt{4} = 2 \][/tex]

6. Substitute back into the quadratic formula:
[tex]\[ x = \frac{8 \pm 2}{6} \][/tex]

7. Solve for the two possible values of [tex]\(x\)[/tex]:
- For the positive case:
[tex]\[ x = \frac{8 + 2}{6} = \frac{10}{6} = \frac{5}{3} \][/tex]
- For the negative case:
[tex]\[ x = \frac{8 - 2}{6} = \frac{6}{6} = 1 \][/tex]

Thus, the solutions to the equation [tex]\(3x^2 - 8x + 5 = 0\)[/tex] are [tex]\(x = 1\)[/tex] and [tex]\(x = \frac{5}{3}\)[/tex].

So the correct answer from the given choices is:
[tex]\[ x = 1, \frac{5}{3} \][/tex]