Which set of numbers gives the correct possible values of [tex]l[/tex] for [tex]n=3[/tex]?

A. [tex]0, 1, 2[/tex]

B. [tex]0, 1, 2, 3[/tex]

C. [tex]-2, -1, 0, 1, 2[/tex]

D. [tex]-3, -2, -1, 0, 1, 2, 3[/tex]



Answer :

To determine the correct set of possible values for [tex]$n=3$[/tex], we need to consider all possible values in the range from [tex]$-n$[/tex] to [tex]$n$[/tex].

Step-by-step solution:

1. Identify the value of [tex]\( n \)[/tex]:
- [tex]\( n = 3 \)[/tex]

2. Define the range of possible values:
- The possible values range from [tex]\( -n \)[/tex] to [tex]\( n \)[/tex]. For [tex]\( n = 3 \)[/tex], this range is from [tex]\( -3 \)[/tex] to [tex]\( 3 \)[/tex].

3. List all the values within this range:
- Start from the smallest value, [tex]\( -3 \)[/tex], and include every integer up to the largest value, [tex]\( 3 \)[/tex].
- The complete list of values is: [tex]\( -3, -2, -1, 0, 1, 2, 3 \)[/tex].

Thus, the correct set of possible values for [tex]\( n=3 \)[/tex] is [tex]\( \{-3, -2, -1, 0, 1, 2, 3\} \)[/tex].

Therefore, the correct answer is:
[tex]\[ \{-3, -2, -1, 0, 1, 2, 3\} \][/tex]

So, the correct option to mark is:

[tex]\[ -3, -2, -1, 0, 1, 2, 3 \][/tex]