To determine the correct set of possible values for [tex]$n=3$[/tex], we need to consider all possible values in the range from [tex]$-n$[/tex] to [tex]$n$[/tex].
Step-by-step solution:
1. Identify the value of [tex]\( n \)[/tex]:
- [tex]\( n = 3 \)[/tex]
2. Define the range of possible values:
- The possible values range from [tex]\( -n \)[/tex] to [tex]\( n \)[/tex]. For [tex]\( n = 3 \)[/tex], this range is from [tex]\( -3 \)[/tex] to [tex]\( 3 \)[/tex].
3. List all the values within this range:
- Start from the smallest value, [tex]\( -3 \)[/tex], and include every integer up to the largest value, [tex]\( 3 \)[/tex].
- The complete list of values is: [tex]\( -3, -2, -1, 0, 1, 2, 3 \)[/tex].
Thus, the correct set of possible values for [tex]\( n=3 \)[/tex] is [tex]\( \{-3, -2, -1, 0, 1, 2, 3\} \)[/tex].
Therefore, the correct answer is:
[tex]\[ \{-3, -2, -1, 0, 1, 2, 3\} \][/tex]
So, the correct option to mark is:
[tex]\[ -3, -2, -1, 0, 1, 2, 3 \][/tex]