An object is thrown upward at a speed of 68 feet per second by a machine from a height of 9 feet off the ground. The height [tex]h[/tex] of the object after [tex]t[/tex] seconds can be found using the equation [tex]h = -16 t^2 + 68 t + 9[/tex].

1. When will the height be 80 feet?

2. When will the object reach the ground?



Answer :

To answer these questions, we need to solve the given height equation [tex]\( h = -16t^2 + 68t + 9 \)[/tex] for specific conditions.


### Part 1: When will the height be 80 feet?

We need to find the time [tex]\( t \)[/tex] when the height [tex]\( h \)[/tex] is 80 feet:

[tex]\[ 80 = -16t^2 + 68t + 9 \][/tex]

Rearrange the equation to set it to zero:

[tex]\[ -16t^2 + 68t + 9 - 80 = 0 \quad \Rightarrow \quad -16t^2 + 68t - 71 = 0 \][/tex]

This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex]. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = -71 \)[/tex]. To solve it, we use the quadratic formula:

[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

First, calculate the discriminant, [tex]\( \Delta \)[/tex]:

[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(-71) \][/tex]

Using the discriminant, we find the two potential solutions for [tex]\( t \)[/tex]:

[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]

Substituting the values, we get:

[tex]\[ t_1 \approx 1.85 \quad \text{seconds} \][/tex]
[tex]\[ t_2 \approx 2.40 \quad \text{seconds} \][/tex]

So, the height of 80 feet is achieved at approximately 1.85 seconds and 2.40 seconds.

[tex]\[ \boxed{1.85 \, \text{seconds}} \][/tex]
[tex]\[ \boxed{2.40 \, \text{seconds}} \][/tex]

### Part 2: When will the object reach the ground?

To find when the object will reach the ground, we set [tex]\( h = 0 \)[/tex]:

[tex]\[ 0 = -16t^2 + 68t + 9 \][/tex]

This is also a quadratic equation. Here, [tex]\( a = -16 \)[/tex], [tex]\( b = 68 \)[/tex], and [tex]\( c = 9 \)[/tex]. We use the same quadratic formula:

[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Calculate the discriminant, [tex]\( \Delta \)[/tex]:

[tex]\[ \Delta = b^2 - 4ac = 68^2 - 4(-16)(9) \][/tex]

Using the discriminant, find the two potential solutions for [tex]\( t \)[/tex]:

[tex]\[ t_1 = \frac{-68 + \sqrt{\Delta}}{2 \times -16} \quad \text{and} \quad t_2 = \frac{-68 - \sqrt{\Delta}}{2 \times -16} \][/tex]

Substituting these values, we get:

[tex]\[ t_1 \approx -0.13 \quad \text{seconds (not a valid physical solution)} \][/tex]
[tex]\[ t_2 \approx 4.38 \quad \text{seconds} \][/tex]

The valid solution is:

[tex]\[ \boxed{4.38 \, \text{seconds}} \][/tex]