Answer :
Alright, let's carefully match each system of equations to its corresponding solution based on the given results.
1. System of Equations:
[tex]\[ \begin{aligned} 2 x + y & = 12 \\ x & = 9 - 2 y \end{aligned} \][/tex]
After analyzing the solutions provided, none of the values [tex]\( (x, y) = (2, 7), (5, 2), (3, 5), (7, 3) \)[/tex] satisfy both equations in this system.
Therefore, for this system, the solution is:
[tex]\[ \boxed{\text{None}} \][/tex]
2. System of Equations:
[tex]\[ \begin{aligned} x + 2 y & = 9 \\ 2 x + 4 y & = 20 \end{aligned} \][/tex]
By comparing the solutions, none of the values [tex]\( (x, y) = (2, 7), (5, 2), (3, 5), (7, 3) \)[/tex] satisfy these equations either.
Therefore, for this system, the solution is:
[tex]\[ \boxed{\text{None}} \][/tex]
3. System of Equations:
[tex]\[ \begin{aligned} x + 3 y & = 16 \\ 2 x - y & = 11 \end{aligned} \][/tex]
Here, the solution [tex]\( (x, y) = (7, 3) \)[/tex] satisfies both equations:
[tex]\[ 7 + 3 \cdot 3 = 16 \\ 2 \cdot 7 - 3 = 11 \][/tex]
Thus, the solution for this system is:
[tex]\[ \boxed{(7, 3)} \][/tex]
To summarize the matches:
1. [tex]\[ \begin{aligned} 2 x + y & = 12 \\ x & = 9 - 2 y \end{aligned} \][/tex]
with [tex]\( \boxed{\text{None}} \)[/tex]
2. [tex]\[ \begin{aligned} x + 2 y & = 9 \\ 2 x + 4 y & = 20 \end{aligned} \][/tex]
with [tex]\( \boxed{\text{None}} \)[/tex]
3. [tex]\[ \begin{aligned} x + 3 y & = 16 \\ 2 x - y & = 11 \end{aligned} \][/tex]
with [tex]\( \boxed{(7, 3)} \)[/tex]
1. System of Equations:
[tex]\[ \begin{aligned} 2 x + y & = 12 \\ x & = 9 - 2 y \end{aligned} \][/tex]
After analyzing the solutions provided, none of the values [tex]\( (x, y) = (2, 7), (5, 2), (3, 5), (7, 3) \)[/tex] satisfy both equations in this system.
Therefore, for this system, the solution is:
[tex]\[ \boxed{\text{None}} \][/tex]
2. System of Equations:
[tex]\[ \begin{aligned} x + 2 y & = 9 \\ 2 x + 4 y & = 20 \end{aligned} \][/tex]
By comparing the solutions, none of the values [tex]\( (x, y) = (2, 7), (5, 2), (3, 5), (7, 3) \)[/tex] satisfy these equations either.
Therefore, for this system, the solution is:
[tex]\[ \boxed{\text{None}} \][/tex]
3. System of Equations:
[tex]\[ \begin{aligned} x + 3 y & = 16 \\ 2 x - y & = 11 \end{aligned} \][/tex]
Here, the solution [tex]\( (x, y) = (7, 3) \)[/tex] satisfies both equations:
[tex]\[ 7 + 3 \cdot 3 = 16 \\ 2 \cdot 7 - 3 = 11 \][/tex]
Thus, the solution for this system is:
[tex]\[ \boxed{(7, 3)} \][/tex]
To summarize the matches:
1. [tex]\[ \begin{aligned} 2 x + y & = 12 \\ x & = 9 - 2 y \end{aligned} \][/tex]
with [tex]\( \boxed{\text{None}} \)[/tex]
2. [tex]\[ \begin{aligned} x + 2 y & = 9 \\ 2 x + 4 y & = 20 \end{aligned} \][/tex]
with [tex]\( \boxed{\text{None}} \)[/tex]
3. [tex]\[ \begin{aligned} x + 3 y & = 16 \\ 2 x - y & = 11 \end{aligned} \][/tex]
with [tex]\( \boxed{(7, 3)} \)[/tex]