Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match the systems of equations to their solutions.

[tex]\[
\begin{aligned}
2x + y & = 12 \\
x & = 9 - 2y
\end{aligned}
\][/tex]

[tex]\[
\begin{aligned}
x + 2y & = 9 \\
2x + 4y & = 20
\end{aligned}
\][/tex]

[tex]\[
\begin{aligned}
x + 3y & = 16 \\
2x - y & = 11
\end{aligned}
\][/tex]

[tex]$2x + y = 11$[/tex]

[tex]$y = 10 + x$[/tex]

[tex]$-3x + 3y = 30$[/tex]

[tex]$x - 2y = -7$[/tex]

[tex]$x = 2, y = 7$[/tex] [tex]$\qquad \square$[/tex]

[tex]$x = 5, y = 2$[/tex] [tex]$\qquad \square$[/tex]

[tex]$x = 3, y = 5$[/tex] [tex]$\qquad \square$[/tex]

[tex]$x = 7, y = 3$[/tex] [tex]$\qquad \square$[/tex]



Answer :

Alright, let's carefully match each system of equations to its corresponding solution based on the given results.

1. System of Equations:
[tex]\[ \begin{aligned} 2 x + y & = 12 \\ x & = 9 - 2 y \end{aligned} \][/tex]
After analyzing the solutions provided, none of the values [tex]\( (x, y) = (2, 7), (5, 2), (3, 5), (7, 3) \)[/tex] satisfy both equations in this system.

Therefore, for this system, the solution is:
[tex]\[ \boxed{\text{None}} \][/tex]

2. System of Equations:
[tex]\[ \begin{aligned} x + 2 y & = 9 \\ 2 x + 4 y & = 20 \end{aligned} \][/tex]
By comparing the solutions, none of the values [tex]\( (x, y) = (2, 7), (5, 2), (3, 5), (7, 3) \)[/tex] satisfy these equations either.

Therefore, for this system, the solution is:
[tex]\[ \boxed{\text{None}} \][/tex]

3. System of Equations:
[tex]\[ \begin{aligned} x + 3 y & = 16 \\ 2 x - y & = 11 \end{aligned} \][/tex]
Here, the solution [tex]\( (x, y) = (7, 3) \)[/tex] satisfies both equations:
[tex]\[ 7 + 3 \cdot 3 = 16 \\ 2 \cdot 7 - 3 = 11 \][/tex]

Thus, the solution for this system is:
[tex]\[ \boxed{(7, 3)} \][/tex]

To summarize the matches:
1. [tex]\[ \begin{aligned} 2 x + y & = 12 \\ x & = 9 - 2 y \end{aligned} \][/tex]
with [tex]\( \boxed{\text{None}} \)[/tex]
2. [tex]\[ \begin{aligned} x + 2 y & = 9 \\ 2 x + 4 y & = 20 \end{aligned} \][/tex]
with [tex]\( \boxed{\text{None}} \)[/tex]
3. [tex]\[ \begin{aligned} x + 3 y & = 16 \\ 2 x - y & = 11 \end{aligned} \][/tex]
with [tex]\( \boxed{(7, 3)} \)[/tex]