Answer :
To determine which piece of ice has the most thermal energy, let's analyze the given scenarios step by step:
### Step 1: Understanding Thermal Energy
Thermal energy of an object is proportional to its mass and temperature. For our context, since all pieces are of ice and the temperatures are in the same range, we can approximate the thermal energy calculation as the product of mass and temperature.
### Step 2: Calculate the Thermal Energy for Each Option
Option A: [tex]\(10 \, \text{g} \)[/tex] ice cube at [tex]\(-3^{\circ} \text{C}\)[/tex]
[tex]\[ \text{Thermal Energy} = 10 \, \text{g} \times (-3) = -30 \][/tex]
Option B: [tex]\(10 \, \text{g} \)[/tex] ice cube at [tex]\(-1^{\circ} \text{C}\)[/tex]
[tex]\[ \text{Thermal Energy} = 10 \, \text{g} \times (-1) = -10 \][/tex]
Option C: [tex]\(10{,}000 \, \text{g} \)[/tex] ice sculpture at [tex]\(-2^{\circ} \text{C}\)[/tex]
[tex]\[ \text{Thermal Energy} = 10{,}000 \, \text{g} \times (-2) = -20{,}000 \][/tex]
Option D: [tex]\(10{,}000 \, \text{g} \)[/tex] ice sculpture at [tex]\(-1^{\circ} \text{C}\)[/tex]
[tex]\[ \text{Thermal Energy} = 10{,}000 \, \text{g} \times (-1) = -10{,}000 \][/tex]
### Step 3: Compare the Thermal Energies
Here are the thermal energies calculated:
- Option A: -30
- Option B: -10
- Option C: -20,000
- Option D: -10,000
### Step 4: Determine the Most Thermal Energy
Since thermal energy is proportional to mass and temperature, and higher values (less negative or closer to zero) indicate more energy, we need to find the highest value among these.
Comparing the values, -10 is the least negative, meaning it is the highest thermal energy among these choices.
### Conclusion:
The piece of ice with the most thermal energy is:
B. A 10 g ice cube at -1°C.
### Step 1: Understanding Thermal Energy
Thermal energy of an object is proportional to its mass and temperature. For our context, since all pieces are of ice and the temperatures are in the same range, we can approximate the thermal energy calculation as the product of mass and temperature.
### Step 2: Calculate the Thermal Energy for Each Option
Option A: [tex]\(10 \, \text{g} \)[/tex] ice cube at [tex]\(-3^{\circ} \text{C}\)[/tex]
[tex]\[ \text{Thermal Energy} = 10 \, \text{g} \times (-3) = -30 \][/tex]
Option B: [tex]\(10 \, \text{g} \)[/tex] ice cube at [tex]\(-1^{\circ} \text{C}\)[/tex]
[tex]\[ \text{Thermal Energy} = 10 \, \text{g} \times (-1) = -10 \][/tex]
Option C: [tex]\(10{,}000 \, \text{g} \)[/tex] ice sculpture at [tex]\(-2^{\circ} \text{C}\)[/tex]
[tex]\[ \text{Thermal Energy} = 10{,}000 \, \text{g} \times (-2) = -20{,}000 \][/tex]
Option D: [tex]\(10{,}000 \, \text{g} \)[/tex] ice sculpture at [tex]\(-1^{\circ} \text{C}\)[/tex]
[tex]\[ \text{Thermal Energy} = 10{,}000 \, \text{g} \times (-1) = -10{,}000 \][/tex]
### Step 3: Compare the Thermal Energies
Here are the thermal energies calculated:
- Option A: -30
- Option B: -10
- Option C: -20,000
- Option D: -10,000
### Step 4: Determine the Most Thermal Energy
Since thermal energy is proportional to mass and temperature, and higher values (less negative or closer to zero) indicate more energy, we need to find the highest value among these.
Comparing the values, -10 is the least negative, meaning it is the highest thermal energy among these choices.
### Conclusion:
The piece of ice with the most thermal energy is:
B. A 10 g ice cube at -1°C.