\begin{tabular}{|l|l|}
\hline
\begin{tabular}{l}
Speed \\
(mph)
\end{tabular} & \begin{tabular}{l}
Stopping \\
distance \\
(ft)
\end{tabular} \\
\hline
10 & 12.5 \\
\hline
20 & 36.0 \\
\hline
30 & 69.5 \\
\hline
40 & 114.0 \\
\hline
50 & 169.5 \\
\hline
60 & 249.0 \\
\hline
70 & 325.5 \\
\hline
\end{tabular}

Using the quadratic regression equation
[tex]\[ y = 0.06x^2 + 0.31x + 4 \][/tex]
predict what your stopping distance would be if you were going 80 miles per hour.

A. [tex]\(\quad 363.2 \, \text{ft}\)[/tex]
B. [tex]\(412.8 \, \text{ft}\)[/tex]
C. [tex]\(355.2 \, \text{ft}\)[/tex]
D. [tex]\(33.6 \, \text{ft}\)[/tex]



Answer :

To predict the stopping distance when traveling at 80 miles per hour using the given quadratic regression equation [tex]\( y = 0.06x^2 + 0.31x + 4 \)[/tex]:

1. Identify the coefficients for the quadratic regression equation:
- [tex]\( a = 0.06 \)[/tex]
- [tex]\( b = 0.31 \)[/tex]
- [tex]\( c = 4 \)[/tex]

2. Substitute [tex]\( x = 80 \)[/tex] into the equation, where [tex]\( x \)[/tex] is the speed in miles per hour.

3. Calculate each term individually:
[tex]\[ 0.06 \cdot (80)^2 = 0.06 \cdot 6400 = 384.0 \][/tex]
[tex]\[ 0.31 \cdot 80 = 24.8 \][/tex]
[tex]\[ 4 \text{ (constant term)} \][/tex]

4. Add the results of these calculations together to get the stopping distance:
[tex]\[ 384.0 + 24.8 + 4 = 412.8 \][/tex]

Therefore, the stopping distance when traveling at 80 miles per hour, using the equation provided, is:
[tex]\[ \boxed{412.8 \text{ ft}} \][/tex]

Among the options provided, the correct answer is b. [tex]\( 412.8 \text{ ft} \)[/tex].