Solve [tex]$4x - c = k$[/tex] for [tex]$x$[/tex].

A. [tex]$x = 4(k + c)$[/tex]
B. [tex]$x = \frac{k - c}{4}$[/tex]
C. [tex][tex]$x = 4(k - c)$[/tex][/tex]
D. [tex]$x = \frac{k + c}{4}$[/tex]



Answer :

To solve the equation [tex]\( 4x - c = k \)[/tex] for [tex]\( x \)[/tex]:

1. Isolate the term involving [tex]\( x \)[/tex]:

Start with:
[tex]\[ 4x - c = k \][/tex]
Add [tex]\( c \)[/tex] to both sides to move the constant term to the right-hand side:
[tex]\[ 4x - c + c = k + c \][/tex]
Simplify:
[tex]\[ 4x = k + c \][/tex]

2. Solve for [tex]\( x \)[/tex]:

Now, divide both sides of the equation by 4 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{k + c}{4} \][/tex]

Therefore, the solution for [tex]\( x \)[/tex] is:
[tex]\[ x = \frac{k + c}{4} \][/tex]

So, the correct answer is:
D. [tex]\( x = \frac{k + c}{4} \)[/tex]