If [tex]F(x) = \frac{2x - 3}{5}[/tex], which of the following is the inverse of [tex]F(x)[/tex]?

A. [tex]F^{-1}(x) = \frac{3x + 2}{5}[/tex]

B. [tex]F^{-1}(x) = \frac{3x + 5}{2}[/tex]

C. [tex]F^{-1}(x) = \frac{2x + 3}{5}[/tex]

D. [tex]F^{-1}(x) = \frac{5x + 3}{2}[/tex]



Answer :

To find the inverse of the function [tex]\( F(x) = \frac{2x - 3}{5} \)[/tex], we need to follow these steps:

1. Replace [tex]\( F(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \frac{2x - 3}{5} \][/tex]

2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
- First, multiply both sides of the equation by 5 to get rid of the denominator:
[tex]\[ 5y = 2x - 3 \][/tex]
- Next, add 3 to both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 5y + 3 = 2x \][/tex]
- Finally, divide both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{5y + 3}{2} \][/tex]

3. Rewrite [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] as the function [tex]\( F^{-1}(x) \)[/tex]:
- Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to denote the inverse function:
[tex]\[ F^{-1}(x) = \frac{5x + 3}{2} \][/tex]

4. Identify the correct option:
- We compare our result with the given options:
A. [tex]\( F^{-1}(x) = \frac{3x + 2}{5} \)[/tex]
B. [tex]\( F^{-1}(x) = \frac{3x + 5}{2} \)[/tex]
C. [tex]\( F^{-1}(x) = \frac{2x + 3}{5} \)[/tex]
D. [tex]\( F^{-1}(x) = \frac{5x + 3}{2} \)[/tex]

- The correct answer matches option D:
[tex]\[ F^{-1}(x) = \frac{5x + 3}{2} \][/tex]

Therefore, the inverse of [tex]\( F(x) \)[/tex] is option D, [tex]\( F^{-1}(x) = \frac{5x + 3}{2} \)[/tex].