Answer :

To find the value of [tex]\( f(x) \)[/tex] at [tex]\( x = \frac{1}{2} \)[/tex] given the function [tex]\( f(x) = 2x^3 - x^2 + 32x - 16 \)[/tex], follow these steps:

1. Substitute [tex]\( x = \frac{1}{2} \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 - \left(\frac{1}{2}\right)^2 + 32\left(\frac{1}{2}\right) - 16 \][/tex]

2. Calculate each term separately:

- For the term [tex]\( 2\left(\frac{1}{2}\right)^3 \)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^3 = \frac{1}{8} \][/tex]
[tex]\[ 2 \cdot \frac{1}{8} = \frac{2}{8} = \frac{1}{4} \][/tex]

- For the term [tex]\( \left(\frac{1}{2}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]

- For the term [tex]\( 32\left(\frac{1}{2}\right) \)[/tex]:
[tex]\[ 32 \cdot \frac{1}{2} = 16 \][/tex]

- The constant term is [tex]\( -16 \)[/tex]:

3. Combine all these results:
[tex]\[ f\left(\frac{1}{2}\right) = \frac{1}{4} - \frac{1}{4} + 16 - 16 \][/tex]

4. Simplify the expression:
[tex]\[ f\left(\frac{1}{2}\right) = \frac{1}{4} - \frac{1}{4} + 16 - 16 = 0 \][/tex]

Therefore, the value of the function [tex]\( f(x) \)[/tex] at [tex]\( x = \frac{1}{2} \)[/tex] is [tex]\( 0 \)[/tex].