Answer :

Let's simplify the expression [tex]\( 3|-(6-4)| + 2|1+3| \)[/tex] step by step.

First, we evaluate the absolute values inside the expression:

1. Evaluate [tex]\( 6 - 4 \)[/tex]:
[tex]\[ 6 - 4 = 2 \][/tex]
Then, find the absolute value of [tex]\(-2\)[/tex]:
[tex]\[ |-(6-4)| = |-2| = 2 \][/tex]

2. Evaluate [tex]\( 1 + 3 \)[/tex]:
[tex]\[ 1 + 3 = 4 \][/tex]
Then, find the absolute value of [tex]\( 4 \)[/tex]:
[tex]\[ |1 + 3| = |4| = 4 \][/tex]

Now, substitute these absolute values back into the expression:
[tex]\[ 3|-(6-4)| + 2|1+3| = 3 \cdot 2 + 2 \cdot 4 \][/tex]

Next, we perform the multiplications:
[tex]\[ 3 \cdot 2 = 6 \][/tex]
[tex]\[ 2 \cdot 4 = 8 \][/tex]

Finally, add the results:
[tex]\[ 6 + 8 = 14 \][/tex]

So, the simplified value of the expression [tex]\( 3|-(6-4)| + 2|1+3| \)[/tex] is:
[tex]\[ \boxed{14} \][/tex]