What is the percentage yield if [tex]125.4 \, \text{g} \, C_3H_8[/tex] are collected from a reaction that should produce [tex]158.4 \, \text{g} \, C_3H_8[/tex]?

A. [tex]79.2 \%[/tex]
B. [tex]58.3 \%[/tex]
C. [tex]26.3 \%[/tex]
D. [tex]44.2 \%[/tex]



Answer :

Alright, let's solve the problem step-by-step to find the percentage yield.

1. Identify the actual yield and the theoretical yield:
- The actual yield is the amount of product actually collected from the reaction, which is [tex]\(125.4 \text{ grams of } C_3H_8\)[/tex].
- The theoretical yield is the amount of product that was expected to be produced if the reaction went perfectly, which is [tex]\(158.4 \text{ grams of } C_3H_8\)[/tex].

2. Write down the formula for percentage yield:
[tex]\[ \text{Percentage Yield} = \left( \frac{\text{Actual Yield}}{\text{Theoretical Yield}} \right) \times 100 \][/tex]

3. Substitute the given values into the formula:
[tex]\[ \text{Percentage Yield} = \left( \frac{125.4}{158.4} \right) \times 100 \][/tex]

4. Perform the division:
[tex]\[ \frac{125.4}{158.4} \approx 0.7916666666666666 \][/tex]

5. Multiply by 100 to convert to a percentage:
[tex]\[ 0.7916666666666666 \times 100 \approx 79.16666666666666 \% \][/tex]

6. Finally, round to one decimal place if needed:
[tex]\[ 79.2\% \][/tex]

Hence, the percentage yield is approximately [tex]\(79.2\%\)[/tex].

Therefore, the correct answer is:

A. [tex]\( 79.2\% \)[/tex]