Which ratio would be used to determine how many moles of hydrogen chloride are produced by reacting [tex]2.3 \, \text{mol}[/tex] of chlorine in excess hydrogen?

[tex]H_2 + Cl_2 \rightarrow 2 HCl[/tex]

A. [tex]\frac{2 \, \text{mol} \, \text{HCl}}{1 \, \text{mol} \, H_2}[/tex]

B. [tex]\frac{1 \, \text{mol} \, Cl_2}{2 \, \text{mol} \, \text{HCl}}[/tex]

C. [tex]\frac{2 \, \text{mol} \, \text{HCl}}{1 \, \text{mol} \, Cl_2}[/tex]

D. [tex]\frac{1 \, \text{mol} \, H_2}{1 \, \text{mol} \, Cl_2}[/tex]



Answer :

To determine how many moles of hydrogen chloride (HCl) are produced when reacting 2.3 moles of chlorine (Cl[tex]\(_2\)[/tex]) with excess hydrogen (H[tex]\(_2\)[/tex]), we must consider the stoichiometry of the balanced chemical equation:
[tex]\[ H_2 + Cl_2 \rightarrow 2 HCl \][/tex]

From the balanced equation, we observe that 1 mole of Cl[tex]\(_2\)[/tex] produces 2 moles of HCl. Therefore, the mole ratio of HCl to Cl[tex]\(_2\)[/tex] is:
[tex]\[ \frac{2 \, \text{mol} \, \text{HCl}}{1 \, \text{mol} \, \text{Cl} _2} \][/tex]

This ratio indicates how many moles of HCl can be formed from a given amount of Cl[tex]\(_2\)[/tex].
So, the correct ratio to use in this case is:
[tex]\[ \frac{2 \, \text{mol} \, \text{HCl}}{1 \, \text{mol} \, \text{Cl} _2} \][/tex]

Thus, the correct answer is:
C. [tex]\(\frac{2 \, \text{mol} \, \text{HCl}}{1 \, \text{mol} \, \text{Cl} _2}\)[/tex]