Answer :

To determine the value of [tex]\(abc\)[/tex] given the equations [tex]\(a + b = 5\)[/tex], [tex]\(b + c = 7\)[/tex], and [tex]\(c + a = 6\)[/tex], follow these steps:

1. Label the equations:
[tex]\[ \begin{cases} a + b = 5 & \text{(1)} \\ b + c = 7 & \text{(2)} \\ c + a = 6 & \text{(3)} \end{cases} \][/tex]

2. Add all three equations:
[tex]\[ (a + b) + (b + c) + (c + a) = 5 + 7 + 6 \][/tex]
Simplify this to:
[tex]\[ 2a + 2b + 2c = 18 \][/tex]
Factor out the 2:
[tex]\[ a + b + c = 9 \quad \text{(4)} \][/tex]

3. Use equation (4) to find individual values for [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:

- From equation (1):
[tex]\[ a + b = 5 \][/tex]
Subtract equation (1) from equation (4):
[tex]\[ c = (a + b + c) - (a + b) = 9 - 5 = 4 \][/tex]

- From equation (2):
[tex]\[ b + c = 7 \][/tex]
Subtract equation (3) from equation (4):
[tex]\[ b = (a + b + c) - (c + a) = 9 - 6 = 3 \][/tex]

- From equation (3):
[tex]\[ c + a = 6 \][/tex]
Subtract equation (2) from equation (4):
[tex]\[ a = (a + b + c) - (b + c) = 9 - 7 = 2 \][/tex]

4. Substitute these values to verify:
- For [tex]\(a\)[/tex]:
[tex]\[ a = 2 \][/tex]
- For [tex]\(b\)[/tex]:
[tex]\[ b = 3 \][/tex]
- For [tex]\(c\)[/tex]:
[tex]\[ c = 4 \][/tex]

5. Calculate the value of [tex]\(abc\)[/tex]:
[tex]\[ abc = 2 \times 3 \times 4 = 24 \][/tex]

Hence, the value of [tex]\(abc\)[/tex] is [tex]\(24\)[/tex].

Therefore, the correct answer is:
b. 24