If a translation of [tex]$T_{-3,-8}(x, y)$[/tex] is applied to square [tex]$ABCD$[/tex], what is the [tex]y[/tex]-coordinate of [tex]B'[/tex]?

A. [tex]-12[/tex]
B. [tex]-8[/tex]
C. [tex]-6[/tex]
D. [tex]-2[/tex]



Answer :

To solve this problem, we need to determine the [tex]$y$[/tex]-coordinate of point [tex]$B'$[/tex] after the translation [tex]\( T_{-3, -8} \)[/tex] is applied to point [tex]$B$[/tex] of the square [tex]$A B C D$[/tex].

A translation [tex]\( T_{-3, -8} \)[/tex] means that we adjust the [tex]$x$[/tex]-coordinate by subtracting 3 and the [tex]$y$[/tex]-coordinate by subtracting 8 from their original values.

Let's consider the [tex]$y$[/tex]-coordinate of point [tex]$B$[/tex]. According to the choices given, we know that initially, one choice corresponds to the original [tex]$y$[/tex]-coordinate.

Given that the initial [tex]$y$[/tex]-coordinate of point [tex]$B$[/tex] is offered as one of the options, we can identify the correct initial [tex]$y$[/tex]-coordinate from these options.

Let's assume the initial [tex]$y$[/tex]-coordinate of point [tex]$B$[/tex] is [tex]\( -2 \)[/tex].

We now apply the translation [tex]\( T_{-3, -8} \)[/tex], focusing on the [tex]$y$[/tex]-coordinate:

[tex]\[ \text{Initial } y\text{-coordinate of } B: -2 \][/tex]

The translation instructs us to subtract 8 from the initial [tex]$y$[/tex]-coordinate:

[tex]\[ -2 - 8 = -10 \][/tex]

Thus, after applying the translation, the [tex]$y$[/tex]-coordinate of point [tex]$B'$[/tex] is:

[tex]\[ \boxed{-10} \][/tex]