11. Simplify [tex]\frac{y^{-2}}{6 y^3}[/tex]

A. [tex]\frac{y^7}{6}[/tex]

B. [tex]\frac{1}{6 y^7}[/tex]

C. [tex]\frac{1}{6 y^3}[/tex]

D. [tex]-\frac{1}{6 y^7}[/tex]



Answer :

To simplify the given expression [tex]\(\frac{y^{-2}}{6 y^3}\)[/tex], let's go through the problem step-by-step:

1. Simplify the Exponents:
The numerator of the fraction has [tex]\(y^{-2}\)[/tex], and the denominator has [tex]\(6 y^3\)[/tex]. We need to combine the exponents of [tex]\(y\)[/tex]
[tex]\[ y^{-2} \text{ and } y^3. \][/tex]
When we divide with the same base, we subtract the exponent in the denominator from the exponent in the numerator:
[tex]\[ y^{-2 - 3} = y^{-5}. \][/tex]

2. Combine with the Coefficient:
The coefficient 6 remains in the denominator. Thus, the expression becomes:
[tex]\[ \frac{y^{-5}}{6}. \][/tex]
This can be rewritten as:
[tex]\[ \frac{1}{6} y^{-5}. \][/tex]

3. Express in Standard Form:
To make the expression cleaner and in standard mathematical form, we typically write it as:
[tex]\[ \frac{1}{6 y^5}. \][/tex]

4. Cross-check with the Choices:
Let's compare our simplified result with the given choices:
- [tex]\(\frac{y^7}{6}\)[/tex]
- [tex]\(\frac{1}{6 y^7}\)[/tex]
- [tex]\(\frac{1}{6 y^3}\)[/tex]
- [tex]\(-\frac{1}{6 y^7}\)[/tex]

The simplified form [tex]\(\frac{1}{6 y^5}\)[/tex] doesn't match any of the provided options exactly. Therefore, none of the provided choices is the correct answer.

So, the correct simplified form of [tex]\(\frac{y^{-2}}{6 y^3}\)[/tex] is:
[tex]\[ \frac{1}{6 y^5}. \][/tex]