Let's solve this problem step-by-step using the distributive property.
1. Understanding the Problem:
- You start with a certain number of apples initially.
- Then, additional apples are added later.
- The goal is to find the total number of apples altogether.
2. Initial Information:
- Let [tex]\( b = \text{initial number of apples} \)[/tex].
- Let [tex]\( c = \text{additional boxes of apples added} \)[/tex].
- Let [tex]\( a = \text{number of apples per box} \)[/tex].
From the problem, we know:
- [tex]\( b = 10 \)[/tex] (initial apples),
- [tex]\( c = 4 \)[/tex] (additional boxes added),
- [tex]\( a = 6 \)[/tex] (apples per box).
3. Using the Distributive Property:
The distributive property states:
[tex]\[
a \times (b + c) = a \times b + a \times c
\][/tex]
4. Applying the Property:
Substitute the values [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[
6 \times (10 + 4) = 6 \times 10 + 6 \times 4
\][/tex]
5. Calculating Each Term:
- First term: [tex]\( 6 \times 10 = 60 \)[/tex]
- Second term: [tex]\( 6 \times 4 = 24 \)[/tex]
6. Adding the Terms Together:
[tex]\[
60 + 24 = 84
\][/tex]
Hence, altogether there are [tex]\( 84 \)[/tex] apples.