To solve the given expression [tex]\( e^{\ln 9} \)[/tex], we can use properties of exponents and logarithms.
First, let's recall a key property that will help us simplify the expression:
- The natural logarithm function, denoted by [tex]\( \ln \)[/tex], is the inverse of the exponential function [tex]\( e^x \)[/tex].
According to this property:
[tex]\[ e^{\ln x} = x \][/tex]
Now, let's apply this property to our specific expression:
[tex]\[ e^{\ln 9} \][/tex]
Given the property [tex]\( e^{\ln x} = x \)[/tex], substituting [tex]\( x \)[/tex] with 9 gives:
[tex]\[ e^{\ln 9} = 9 \][/tex]
Therefore, the value of the expression [tex]\( e^{\ln 9} \)[/tex] is:
[tex]\[ 9 \][/tex]
So, the correct answer is:
D. 9