What is the equation of the line perpendicular to [tex]2x - 3y = 13[/tex] that passes through the point [tex](-6, 5)[/tex]?

A. [tex]y = \frac{2}{3}x + 9[/tex]
B. [tex]y = -\frac{3}{2}x - 4[/tex]
C. [tex]y = -\frac{3}{2}x - 13[/tex]
D. [tex]y = \frac{2}{3}x - 1[/tex]



Answer :

To determine the equation of the line perpendicular to [tex]\(2x - 3y = 13\)[/tex] that passes through the point [tex]\((-6, 5)\)[/tex], follow these steps:

1. Find the slope of the original line [tex]\(2x - 3y = 13\)[/tex]:
- The standard form of the line is [tex]\(Ax + By = C\)[/tex].
- Rearrange this equation into slope-intercept form [tex]\(y = mx + b\)[/tex] to identify the slope [tex]\(m\)[/tex].
- Rewrite [tex]\(2x - 3y = 13\)[/tex] as:
[tex]\[ -3y = -2x + 13 \][/tex]
- Divide every term by -3 to solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{2}{3}x - \frac{13}{3} \][/tex]
- Thus, the slope [tex]\(m\)[/tex] of the original line is [tex]\(\frac{2}{3}\)[/tex].

2. Determine the slope of the perpendicular line:
- The slope of a line perpendicular to another is the negative reciprocal of the original slope.
- The negative reciprocal of [tex]\(\frac{2}{3}\)[/tex] is:
[tex]\[ -\frac{3}{2} \][/tex]

3. Find the equation of the new line using the point (-6, 5):
- Use the point-slope form of the equation: [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is the point [tex]\((-6, 5)\)[/tex].
- Substitute [tex]\(m = -\frac{3}{2}\)[/tex], [tex]\(x_1 = -6\)[/tex], and [tex]\(y_1 = 5\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}(x + 6) \][/tex]
- Simplify the equation:
[tex]\[ y - 5 = -\frac{3}{2}x - 9 \][/tex]
[tex]\[ y = -\frac{3}{2}x - 4 \][/tex]

Therefore, the equation of the line perpendicular to [tex]\(2x - 3y = 13\)[/tex] that passes through the point [tex]\((-6, 5)\)[/tex] is:
[tex]\[ y = -\frac{3}{2}x - 4 \][/tex]

Among the given choices, the correct equation is:
[tex]\[ y = -\frac{3}{2} x - 4 \][/tex]