Find the zeros of [tex]$y=x^2+6x-4$[/tex] by completing the square.

A. [tex]$x=-3 \pm \sqrt{13}$[/tex]

B. [tex][tex]$x= \pm 3$[/tex][/tex]

C. [tex]$x=3 \pm \sqrt{13}$[/tex]

D. [tex]$x=3 \pm \sqrt{5}$[/tex]



Answer :

To find the zeros of the quadratic equation [tex]\( y = x^2 + 6x - 4 \)[/tex] by completing the square, follow these steps:

1. Start with the given quadratic equation:
[tex]\[ x^2 + 6x - 4 = 0 \][/tex]

2. Move the constant term to the other side of the equation:
[tex]\[ x^2 + 6x = 4 \][/tex]

3. To complete the square on the left side, we need to add and subtract the square of half the coefficient of [tex]\(x\)[/tex]. The coefficient of [tex]\(x\)[/tex] is 6, so half of it is 3, and its square is 9. Thus, we add and subtract 9:
[tex]\[ x^2 + 6x + 9 - 9 = 4 \][/tex]

4. Rewrite the equation by grouping the perfect square trinomial and the constant terms:
[tex]\[ (x + 3)^2 - 9 = 4 \][/tex]

5. Simplify by isolating the perfect square:
[tex]\[ (x + 3)^2 = 4 + 9 \implies (x + 3)^2 = 13 \][/tex]

6. Take the square root of both sides:
[tex]\[ x + 3 = \pm \sqrt{13} \][/tex]

7. Solve for [tex]\(x\)[/tex] by isolating it on one side:
[tex]\[ x = -3 \pm \sqrt{13} \][/tex]

Therefore, the zeros of the quadratic equation [tex]\( y = x^2 + 6x - 4 \)[/tex] are:
[tex]\[ x = -3 \pm \sqrt{13} \][/tex]

Hence, the correct answer is:
[tex]\[ \boxed{A. \; x=-3 \pm \sqrt{13}} \][/tex]

The result matches the choice A in the provided options.