Triangle [tex]$PQR$[/tex] has vertices [tex]$P(-2,6)$[/tex], [tex]$Q(-8,4)$[/tex], and [tex]$R(1,-2)$[/tex]. It is translated according to the rule [tex]$(x, y) \rightarrow (x-2, y-16)$[/tex].

What is the [tex]$y$[/tex]-value of [tex]$P^{\prime}$[/tex]?

A. [tex]$-18$[/tex]
B. [tex]$-16$[/tex]
C. [tex]$-12$[/tex]
D. [tex]$-10$[/tex]



Answer :

To determine the new coordinates of point [tex]\( P \)[/tex] after it has been translated according to the rule [tex]\((x, y) \rightarrow (x-2, y-16)\)[/tex], we will follow these steps:

1. Identify the original coordinates of point [tex]\(P\)[/tex]:
[tex]\( P(-2, 6) \)[/tex]

2. Understand the translation rule:
The rule given is [tex]\((x, y) \rightarrow (x-2, y-16)\)[/tex]. This means each [tex]\( x \)[/tex]-coordinate is decreased by 2, and each [tex]\( y \)[/tex]-coordinate is decreased by 16.

3. Apply the translation to the [tex]\(y\)[/tex]-coordinate of [tex]\(P\)[/tex]:
The original [tex]\( y \)[/tex]-coordinate of [tex]\( P \)[/tex] is [tex]\(6\)[/tex].

According to the translation rule, we need to subtract 16 from this [tex]\( y \)[/tex]-coordinate:
[tex]\[ y_{\text{new}} = 6 - 16 \][/tex]

4. Calculate the new [tex]\( y \)[/tex]-coordinate:
[tex]\[ y_{\text{new}} = 6 - 16 = -10 \][/tex]

So, the new [tex]\( y \)[/tex]-coordinate of point [tex]\( P' \)[/tex] after the translation is [tex]\(-10\)[/tex].

Therefore, the [tex]\( y \)[/tex]-value of [tex]\( P' \)[/tex] is:
[tex]\[ \boxed{-10} \][/tex]