Sure, let's simplify the expression [tex]\( x^4 y^{-3} \)[/tex] step-by-step.
1. Understand the initial expression:
- You have [tex]\( x^4 y^{-3} \)[/tex].
2. Recall the property of exponents:
- The exponent rule [tex]\( a^{-n} = \frac{1}{a^n} \)[/tex] allows us to move a term with a negative exponent from the numerator to the denominator.
3. Apply the exponent rule:
- For the given expression [tex]\( x^4 y^{-3} \)[/tex], the term [tex]\( y^{-3} \)[/tex] can be rewritten as [tex]\( \frac{1}{y^3} \)[/tex].
4. Combine the terms:
- Rewrite the expression by combining [tex]\( x^4 \)[/tex] and [tex]\( \frac{1}{y^3} \)[/tex]. This gives us [tex]\( x^4 \times \frac{1}{y^3} \)[/tex].
5. Simplify the expression:
- Multiply [tex]\( x^4 \)[/tex] and [tex]\( \frac{1}{y^3} \)[/tex] together to get [tex]\( \frac{x^4}{y^3} \)[/tex].
So, the simplified expression is [tex]\( \boxed{\frac{x^4}{y^3}} \)[/tex].