Which function results after applying the sequence of transformations to [tex]$f(x)=x^5$[/tex]?

- Compress vertically by [tex]$\frac{1}{2}$[/tex]
- Shift left 2 units
- Shift down 1 unit

A. [tex]g(x)=\left(\frac{1}{2} x+2\right)^5-1[/tex]

B. [tex]g(x)=\frac{1}{2}(x+2)^5-1[/tex]

C. [tex]g(x)=\frac{1}{2}(x-2)^5-1[/tex]

D. [tex]g(x)=\frac{1}{2}(x-1)^5-2[/tex]



Answer :

To find the resulting function after applying the given sequence of transformations to [tex]\( f(x) = x^5 \)[/tex], let's follow each transformation step-by-step:

1. Vertical Compression by [tex]\(\frac{1}{2}\)[/tex]:
When we compress a function vertically by a factor of [tex]\(\frac{1}{2}\)[/tex], we multiply the entire function by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ f(x) = x^5 \implies \frac{1}{2} \cdot x^5 \][/tex]
Therefore, after this transformation, our modified function is:
[tex]\[ g(x) = \frac{1}{2} x^5 \][/tex]

2. Horizontal Shift Left by 2 Units:
To shift the function horizontally to the left by 2 units, we replace [tex]\( x \)[/tex] with [tex]\( x + 2 \)[/tex] in the function:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 \][/tex]

3. Vertical Shift Down by 1 Unit:
To shift the function vertically down by 1 unit, we subtract 1 from the function:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 - 1 \][/tex]

Combining all these transformations, we get the resulting function after applying the sequence of transformations to [tex]\( f(x) = x^5 \)[/tex]:
[tex]\[ g(x) = \frac{1}{2}(x + 2)^5 - 1 \][/tex]

Thus, the correct answer is:

B. [tex]\( g(x) = \frac{1}{2}(x + 2)^5 - 1 \)[/tex]