15. A cube has a side of length [tex]$1.2 \times 10^{-2} \, \text{m}$[/tex]. Calculate its volume.

1. [tex]$1.7 \times 10^{-6} \, \text{m}^3$[/tex]
2. [tex][tex]$1.73 \times 10^{-6} \, \text{m}^3$[/tex][/tex]
3. [tex]$1.70 \times 10^{-6} \, \text{m}^3$[/tex]
4. [tex]$1.732 \times 10^{-6} \, \text{m}^3$[/tex]



Answer :

To find the volume of a cube, you use the formula:

[tex]\[ \text{Volume} = \text{side length}^3 \][/tex]

In this case, the side length of the cube is [tex]\( 1.2 \times 10^{-2} \, \text{meters} \)[/tex].

Step-by-step solution:

1. Determine the side length of the cube:
[tex]\[ \text{Side length} = 1.2 \times 10^{-2} \, \text{m} \][/tex]

2. Calculate the volume:
[tex]\[ \text{Volume} = (1.2 \times 10^{-2} \, \text{m})^3 \][/tex]

3. Expand the calculation:
[tex]\[ \begin{align*} (1.2 \times 10^{-2} \, \text{m})^3 & = 1.2^3 \times (10^{-2})^3 \\ & = 1.728 \times 10^{-6} \, \text{m}^3 \end{align*} \][/tex]

So, the volume of the cube is:
[tex]\[ 1.728 \times 10^{-6} \, \text{m}^3 \][/tex]

Among the answer choices provided:
1. [tex]\(1.7 \times 10^{-6} \, \text{m}^3\)[/tex]
2. [tex]\(1.73 \times 10^{-6} \, \text{m}^3\)[/tex]
3. [tex]\(1.70 \times 10^{-6} \, \text{m}^3\)[/tex]
4. [tex]\(1.732 \times 10^{-6} \, \text{m}^3\)[/tex]

None are exactly 1.728, but the closest approximation provided is:

[tex]\[ (2) \, 1.73 \times 10^{-6} \, \text{m}^3 \][/tex]

Thus, the correct choice is:
[tex]\[ \boxed{1.73 \times 10^{-6} \, \text{m}^3} \][/tex]