To simplify the expression [tex]\( 5x(2x + 5) - x^2 + 4x \)[/tex], let's follow these steps:
1. Distribute [tex]\( 5x \)[/tex] inside the parenthesis:
[tex]\[
5x(2x + 5) = 5x \cdot 2x + 5x \cdot 5 = 10x^2 + 25x
\][/tex]
2. Combine all parts of the expression:
[tex]\[
10x^2 + 25x - x^2 + 4x
\][/tex]
3. Combine like terms:
[tex]\[
10x^2 - x^2 + 25x + 4x = 9x^2 + 29x
\][/tex]
So, when [tex]\( 5x(2x + 5) - x^2 + 4x \)[/tex] is simplified, it is equivalent to:
[tex]\[ 9x^2 + 29x \][/tex]
The correct answer is:
(4) [tex]\( 9x^2 + 29x \)[/tex]