\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-3 & -8 \\
\hline
-1 & -2 \\
\hline
1 & 4 \\
\hline
3 & 10 \\
\hline
\end{tabular}

Fill in the blanks to write an equation in slope-intercept form representing the function shown in the table.

[tex]\[ y = \square x + \square \][/tex]



Answer :

To determine the equation of the line in slope-intercept form [tex]\( y = mx + b \)[/tex] from the given points on the table, we need to follow these steps:

### Step 1: Calculate the Slope [tex]\( m \)[/tex]

The slope [tex]\( m \)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] can be found using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

We will use the first two points [tex]\((-3, -8)\)[/tex] and [tex]\((-1, -2)\)[/tex]:

[tex]\[ x_1 = -3, \quad y_1 = -8 \][/tex]
[tex]\[ x_2 = -1, \quad y_2 = -2 \][/tex]

Plug these values into the slope formula:
[tex]\[ m = \frac{-2 - (-8)}{-1 - (-3)} = \frac{-2 + 8}{-1 + 3} = \frac{6}{2} = 3 \][/tex]

So, the slope [tex]\( m \)[/tex] is [tex]\( 3.0 \)[/tex].

### Step 2: Determine the Y-Intercept [tex]\( b \)[/tex]

The slope-intercept form of the equation is [tex]\( y = mx + b \)[/tex]. We have [tex]\( m = 3.0 \)[/tex], and we need to determine [tex]\( b \)[/tex]. We can use any point from the table. Let's use the point [tex]\((-3, -8)\)[/tex]:

Plug in the values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( m \)[/tex] into the equation [tex]\( y = mx + b \)[/tex]:

[tex]\[ -8 = 3(-3) + b \][/tex]

Simplify this equation to find [tex]\( b \)[/tex]:
[tex]\[ -8 = -9 + b \][/tex]

Add 9 to both sides to solve for [tex]\( b \)[/tex]:
[tex]\[ b = 1 \][/tex]

So, the y-intercept [tex]\( b \)[/tex] is [tex]\( 1.0 \)[/tex].

### Final Equation

By combining the slope [tex]\( m = 3.0 \)[/tex] and the y-intercept [tex]\( b = 1.0 \)[/tex], the equation of the line in slope-intercept form is:

[tex]\[ y = 3.0x + 1.0 \][/tex]

Therefore, the equation representing the function shown in the table is:

[tex]\[ y = \boxed{3.0}x + \boxed{1.0} \][/tex]