What rule should be used to transform a table of data to represent the reflection of [tex]$f(x)$[/tex] over the line [tex]$y=x$[/tex]?

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{[tex]$f(x)$[/tex]} \\
\hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline -2 & -31 \\
\hline -1 & 0 \\
\hline 1 & 2 \\
\hline 2 & 33 \\
\hline
\end{tabular}

A. Switch the [tex]$x$[/tex]-values and [tex]$y$[/tex]-values in the table.

B. Multiply the [tex]$x$[/tex]-values and the [tex]$y$[/tex]-values in the table by -1.

C. Multiply each [tex]$x$[/tex]-value in the table by -1.

D. Multiply each [tex]$y$[/tex]-value in the table by -1.



Answer :

To transform a table of data to represent the reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex], we need to understand that reflecting a function over the line [tex]\( y = x \)[/tex] involves swapping the [tex]\( x \)[/tex]-coordinates and [tex]\( y \)[/tex]-coordinates. The reason for this is that reflection over the line [tex]\( y = x \)[/tex] essentially interchanges the roles of the [tex]\( x \)[/tex]-axis and [tex]\( y \)[/tex]-axis.

Given the table for [tex]\( f(x) \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & -31 \\ -1 & 0 \\ 1 & 2 \\ 2 & 33 \\ \hline \end{array} \][/tex]

To find the reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex], we apply the following transformation rule:
- Switch the [tex]\( x \)[/tex]-values and [tex]\( y \)[/tex]-values in the table.

Applying this transformation to the table, we get:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -31 & -2 \\ 0 & -1 \\ 2 & 1 \\ 33 & 2 \\ \hline \end{array} \][/tex]

This transformed table represents the reflection of [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex].

Thus, the correct rule to use is:
- A. Switch the [tex]\( x \)[/tex]-values and [tex]\( y \)[/tex]-values in the table.