Answer :
To find the density of the substance using the formula [tex]\( p = \frac{M}{V} \)[/tex], where [tex]\( p \)[/tex] is the density, [tex]\( M \)[/tex] is the mass, and [tex]\( V \)[/tex] is the volume, follow these steps:
1. Identify the given values:
- Mass ([tex]\( M \)[/tex]) = 27.82 grams
- Volume ([tex]\( V \)[/tex]) = 3.6 ml
2. Substitute the given values into the density formula:
[tex]\[ p = \frac{M}{V} = \frac{27.82 \text{ grams}}{3.6 \text{ ml}} \][/tex]
3. Perform the division to calculate the density:
[tex]\[ p = 7.727777777777778 \text{ g/ml} \][/tex]
4. Choose the most accurate option from the provided choices:
- 7.7
- 7.7278
- 7.73
- 0.1
The most accurate density of the substance is:
[tex]\[ 7.727777777777778 \approx 7.7278 \text{ g/ml} \][/tex]
Therefore, the most accurate density is 7.7278 g/ml.
1. Identify the given values:
- Mass ([tex]\( M \)[/tex]) = 27.82 grams
- Volume ([tex]\( V \)[/tex]) = 3.6 ml
2. Substitute the given values into the density formula:
[tex]\[ p = \frac{M}{V} = \frac{27.82 \text{ grams}}{3.6 \text{ ml}} \][/tex]
3. Perform the division to calculate the density:
[tex]\[ p = 7.727777777777778 \text{ g/ml} \][/tex]
4. Choose the most accurate option from the provided choices:
- 7.7
- 7.7278
- 7.73
- 0.1
The most accurate density of the substance is:
[tex]\[ 7.727777777777778 \approx 7.7278 \text{ g/ml} \][/tex]
Therefore, the most accurate density is 7.7278 g/ml.