Answer :

Let's solve the equation step by step to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

1. Simplify the given fraction [tex]\(\frac{-14}{63}\)[/tex]:

We can simplify [tex]\(\frac{-14}{63}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor (GCD), which is 7.

[tex]\[ \frac{-14}{63} = \frac{-14 \div 7}{63 \div 7} = \frac{-2}{9} \][/tex]

2. Now, let's equate [tex]\(\frac{x}{9}\)[/tex] to the simplified fraction [tex]\(\frac{-2}{9}\)[/tex]. From this equality:

[tex]\[ \frac{x}{9} = \frac{-2}{9} \][/tex]

Since the denominators are the same, we can set the numerators equal to each other:

[tex]\[ x = -2 \][/tex]

3. Next, we equate [tex]\(\frac{-18}{y}\)[/tex] to the simplified fraction [tex]\(\frac{-2}{9}\)[/tex]. From this equality:

[tex]\[ \frac{-18}{y} = \frac{-2}{9} \][/tex]

To solve for [tex]\( y \)[/tex], we can cross-multiply:

[tex]\[ -18 \cdot 9 = -2 \cdot y \][/tex]

Simplifying this, we get:

[tex]\[ -162 = -2y \][/tex]

Dividing both sides by [tex]\(-2\)[/tex]:

[tex]\[ y = \frac{-162}{-2} = 81 \][/tex]

Therefore, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are:

[tex]\[ (x, y) = (-2, 81) \][/tex]