Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.

What value of [tex]$x$[/tex] satisfies this equation?
[tex]
1.5(4)^{2x}=12
[/tex]

Round your answer to the nearest hundredth.

The value of [tex]$x$[/tex] is [tex]\square[/tex]



Answer :

To solve the equation [tex]\(1.5 \cdot 4^{2x} = 12\)[/tex], follow these steps:

1. Isolate the exponential expression:
[tex]\[ 4^{2x} = \frac{12}{1.5} \][/tex]
Simplify the fraction:
[tex]\[ 4^{2x} = 8 \][/tex]

2. Express both sides with base 2 (since 4 and 8 are powers of 2):
[tex]\[ (2^2)^{2x} = 2^3 \][/tex]

3. Simplify the left-hand side:
[tex]\[ 2^{4x} = 2^3 \][/tex]

4. Since the bases are the same, set the exponents equal to each other:
[tex]\[ 4x = 3 \][/tex]

5. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{3}{4} \][/tex]

The value of [tex]\(x\)[/tex] is [tex]\(\frac{3}{4}\)[/tex] or 0.75 when written as a decimal.

6. Round to the nearest hundredth (if needed):
The value of [tex]\(x\)[/tex] is [tex]\(0.75\)[/tex].

Thus, the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(\boxed{0.75}\)[/tex].