Jeremy is 29 years old and in good health. What is the annual premium for the cheapest policy having a \[tex]$90,000 face value that Jeremy can buy?

\begin{tabular}{|l|l|l|l|l|l|l|}
\hline
\multirow{3}{*}{ Age } & \multicolumn{4}{|l|}{ Annual Life Insurance Premium (per \$[/tex]1000 of face value) } \\
\cline { 2 - 7 }
& Whole Life & 20-Payment Life & \multicolumn{2}{l|}{ 20-Year Endowment } \\
\cline { 2 - 7 }
& Male & Female & Male & Female & Male & Female \\
\hline
25 & \[tex]$16.38 & \$[/tex]14.38 & \[tex]$28.40 & \$[/tex]25.04 & \[tex]$37.02 & \$[/tex]34.87 \\
\hline
26 & \[tex]$16.91 & \$[/tex]14.77 & \[tex]$29.11 & \$[/tex]25.96 & \[tex]$37.67 & \$[/tex]35.30 \\
\hline
27 & \[tex]$17.27 & \$[/tex]15.23 & \[tex]$29.97 & \$[/tex]25.83 & \[tex]$35.23 & \$[/tex]35.96 \\
\hline
28 & \[tex]$17.75 & \$[/tex]15.65 & \[tex]$30.68 & \$[/tex]27.54 & \[tex]$38.96 & \$[/tex]35.44 \\
\hline
29 & \[tex]$18.25 & \$[/tex]15.09 & \[tex]$31.39 & \$[/tex]28.25 & \[tex]$39.69 & \$[/tex]36.92 \\
\hline
30 & \[tex]$18.75 & \$[/tex]16.52 & \[tex]$32.11 & \$[/tex]28.97 & \[tex]$40.43 & \$[/tex]37.40 \\
\hline
\end{tabular}

a. \[tex]$1,825

b. \$[/tex]1,294

c. \[tex]$1,929

d. \$[/tex]1,643



Answer :

To determine the cheapest annual premium for a whole life insurance policy with a face value of \[tex]$90,000 for Jeremy, who is 29 years old, we can follow these steps: 1. Identify the rate: From the given table, find the annual premium per \$[/tex]1000 of face value for a 29-year-old male under the "Whole Life" category. According to the table, this rate is \[tex]$18.25 per \$[/tex]1000 of face value.

2. Calculate the premium for \[tex]$90,000: - First, determine how many units of \$[/tex]1000 are in \[tex]$90,000. \[ \frac{90,000}{1,000} = 90 \] - Next, calculate the annual premium by multiplying the number of units by the rate per unit: \[ \text{Annual premium} = 90 \times 18.25 = 1642.5 \] 3. Match the result with the choices: From the provided answer choices, a. \$[/tex]1,825
b. \[tex]$1,294 c. \$[/tex]1,929
d. \[tex]$1,643 The calculated annual premium of \$[/tex]1,642.50 is closest to choice d: \[tex]$1,643. Therefore, the correct answer is: d. \$[/tex]1,643