Answer :
To evaluate [tex]\(5! + 2!\)[/tex], let's break it down into clear steps:
1. Find the factorial of 5 ([tex]\(5!\)[/tex]):
The factorial of a number [tex]\(n!\)[/tex] is the product of all positive integers less than or equal to [tex]\(n\)[/tex].
[tex]\[ 5! = 5 \times 4 \times 3 \times 2 \times 1 \][/tex]
Calculating this step-by-step:
[tex]\[ 5 \times 4 = 20 \][/tex]
[tex]\[ 20 \times 3 = 60 \][/tex]
[tex]\[ 60 \times 2 = 120 \][/tex]
[tex]\[ 120 \times 1 = 120 \][/tex]
So, [tex]\(5! = 120\)[/tex].
2. Find the factorial of 2 ([tex]\(2!\)[/tex]):
[tex]\[ 2! = 2 \times 1 \][/tex]
Calculating this:
[tex]\[ 2 \times 1 = 2 \][/tex]
So, [tex]\(2! = 2\)[/tex].
3. Add the two factorials [tex]\(5! + 2!\)[/tex]:
[tex]\[ 5! + 2! = 120 + 2 \][/tex]
Adding these together:
[tex]\[ 120 + 2 = 122 \][/tex]
Therefore, the answer to [tex]\(5! + 2!\)[/tex] is [tex]\(122\)[/tex].
1. Find the factorial of 5 ([tex]\(5!\)[/tex]):
The factorial of a number [tex]\(n!\)[/tex] is the product of all positive integers less than or equal to [tex]\(n\)[/tex].
[tex]\[ 5! = 5 \times 4 \times 3 \times 2 \times 1 \][/tex]
Calculating this step-by-step:
[tex]\[ 5 \times 4 = 20 \][/tex]
[tex]\[ 20 \times 3 = 60 \][/tex]
[tex]\[ 60 \times 2 = 120 \][/tex]
[tex]\[ 120 \times 1 = 120 \][/tex]
So, [tex]\(5! = 120\)[/tex].
2. Find the factorial of 2 ([tex]\(2!\)[/tex]):
[tex]\[ 2! = 2 \times 1 \][/tex]
Calculating this:
[tex]\[ 2 \times 1 = 2 \][/tex]
So, [tex]\(2! = 2\)[/tex].
3. Add the two factorials [tex]\(5! + 2!\)[/tex]:
[tex]\[ 5! + 2! = 120 + 2 \][/tex]
Adding these together:
[tex]\[ 120 + 2 = 122 \][/tex]
Therefore, the answer to [tex]\(5! + 2!\)[/tex] is [tex]\(122\)[/tex].