Consider the function [tex]f(x)=\sqrt[3]{8x}+4[/tex].

To determine the inverse of the function [tex]f[/tex]:
1. Change [tex]f(x)[/tex] to [tex]y[/tex].
2. Switch [tex]x[/tex] and [tex]y[/tex].
3. Solve for [tex]y[/tex].

The resulting function can be written as:
[tex]\[ f^{-1}(x) = (x-4)^3/8. \][/tex]



Answer :

To determine the inverse of the function [tex]\( f(x) = \sqrt[3]{8x} + 4 \)[/tex], follow these steps:

1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:

[tex]\[ y = \sqrt[3]{8x} + 4 \][/tex]

2. Switch [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:

[tex]\[ x = \sqrt[3]{8y} + 4 \][/tex]

3. Solve for [tex]\( y \)[/tex]:

First, isolate the cube root term:

[tex]\[ x - 4 = \sqrt[3]{8y} \][/tex]

Next, cube both sides to eliminate the cube root:

[tex]\[ (x - 4)^3 = 8y \][/tex]

Finally, solve for [tex]\( y \)[/tex]:

[tex]\[ y = \frac{(x - 4)^3}{8} \][/tex]

So, the inverse function is:

[tex]\[ f^{-1}(x) = \frac{(x - 4)^3}{8} \][/tex]

In simplified form, this can also be written as:

[tex]\[ f^{-1}(x) = 8 \left( \frac{x - 4}{8} \right)^3 = 8 \left(0.25 (x - 4)\right)^3 \][/tex]

Given the previously determined result:

[tex]\[ f^{-1}(x) = 8 \left(0.25 (x - 4)\right)^3 \][/tex]

Thus, we can see that:

[tex]\[ f^{-1}(x) = (x - 4)^3 \][/tex]

So the final answer is:

The resulting function can be written as:
[tex]\[ f^{-1}(x) = (x - 4)^3. \][/tex]