Answer :
To solve the given system of equations using Cramer's Rule, we follow these steps:
1. Write down the system of equations:
[tex]\[ \begin{array}{l} -x - 3y = -3 \\ -2x - 5y = -8 \end{array} \][/tex]
2. Define the coefficient matrix [tex]\( A \)[/tex] and the constants matrix [tex]\( B \)[/tex]:
[tex]\[ A = \begin{bmatrix} -1 & -3 \\ -2 & -5 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -3 \\ -8 \end{bmatrix} \][/tex]
3. Calculate the determinant of the coefficient matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (-1 \cdot -5) - (-3 \cdot -2) = 5 - 6 = -1 \][/tex]
4. Form the matrix [tex]\( A_1 \)[/tex] by replacing the first column of [tex]\( A \)[/tex] with matrix [tex]\( B \)[/tex]:
[tex]\[ A_1 = \begin{bmatrix} -3 & -3 \\ -8 & -5 \end{bmatrix} \][/tex]
5. Calculate the determinant of the matrix [tex]\( A_1 \)[/tex]:
[tex]\[ \text{det}(A_1) = (-3 \cdot -5) - (-3 \cdot -8) = 15 - 24 = -9 \][/tex]
6. According to Cramer's Rule, the value of [tex]\( x \)[/tex] is given by:
[tex]\[ x = \frac{\text{det}(A_1)}{\text{det}(A)} = \frac{-9}{-1} = 9 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] in the solution to the system of equations is [tex]\( x = 9 \)[/tex].
1. Write down the system of equations:
[tex]\[ \begin{array}{l} -x - 3y = -3 \\ -2x - 5y = -8 \end{array} \][/tex]
2. Define the coefficient matrix [tex]\( A \)[/tex] and the constants matrix [tex]\( B \)[/tex]:
[tex]\[ A = \begin{bmatrix} -1 & -3 \\ -2 & -5 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -3 \\ -8 \end{bmatrix} \][/tex]
3. Calculate the determinant of the coefficient matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (-1 \cdot -5) - (-3 \cdot -2) = 5 - 6 = -1 \][/tex]
4. Form the matrix [tex]\( A_1 \)[/tex] by replacing the first column of [tex]\( A \)[/tex] with matrix [tex]\( B \)[/tex]:
[tex]\[ A_1 = \begin{bmatrix} -3 & -3 \\ -8 & -5 \end{bmatrix} \][/tex]
5. Calculate the determinant of the matrix [tex]\( A_1 \)[/tex]:
[tex]\[ \text{det}(A_1) = (-3 \cdot -5) - (-3 \cdot -8) = 15 - 24 = -9 \][/tex]
6. According to Cramer's Rule, the value of [tex]\( x \)[/tex] is given by:
[tex]\[ x = \frac{\text{det}(A_1)}{\text{det}(A)} = \frac{-9}{-1} = 9 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] in the solution to the system of equations is [tex]\( x = 9 \)[/tex].