Select the correct answer.

Consider the function.
\begin{tabular}{|c|c|c|c|c|}
\hline[tex]$x$[/tex] & -1 & 0 & 1 & 2 \\
\hline[tex]$f(x)$[/tex] & -2 & 3 & 8 & 13 \\
\hline
\end{tabular}

Which function could be the inverse of the given function?

A.
\begin{tabular}{|c|c|c|c|c|}
\hline[tex]$x$[/tex] & -1 & 0 & 1 & 2 \\
\hline[tex]$p(x)$[/tex] & 2 & -3 & -8 & -13 \\
\hline
\end{tabular}

B.
\begin{tabular}{|c|c|c|c|c|}
\hline[tex]$x$[/tex] & -2 & 3 & 8 & 13 \\
\hline[tex]$q(x)$[/tex] & -1 & 0 & 1 & 2 \\
\hline
\end{tabular}

C.
\begin{tabular}{|c|c|c|c|c|}
\hline[tex]$x$[/tex] & 1 & 0 & -1 & -2 \\
\hline[tex]$s(x)$[/tex] & -2 & 3 & 8 & 13 \\
\hline
\end{tabular}

D.
\begin{tabular}{|c|c|c|c|c|}
\hline[tex]$x$[/tex] & 2 & -3 & -8 & -13 \\
\hline[tex]$r(x)$[/tex] & 1 & 0 & -1 & -2 \\
\hline
\end{tabular}



Answer :

To determine which function represents the inverse of the given function, we need to understand the concept of inverse functions. An inverse function essentially swaps the x and f(x) values of the original function.

Given the table for the function [tex]\(f(x)\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -1 & 0 & 1 & 2 \\ \hline f(x) & -2 & 3 & 8 & 13 \\ \hline \end{array} \][/tex]

To find the inverse function, we switch the x and f(x) values:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -2 & 3 & 8 & 13 \\ \hline f^{-1}(x) & -1 & 0 & 1 & 2 \\ \hline \end{array} \][/tex]

Now, let's compare this table to the provided options:

A.
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -1 & 0 & 1 & 2 \\ \hline p(x) & 2 & -3 & -8 & -13 \\ \hline \end{array} \][/tex]
Option A does not match our derived inverse table.

B.
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -2 & 3 & 8 & 13 \\ \hline q(x) & -1 & 0 & 1 & 2 \\ \hline \end{array} \][/tex]
Option B matches our derived inverse table exactly.

C.
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 1 & 0 & -1 & -2 \\ \hline s(x) & -2 & 3 & 8 & 13 \\ \hline \end{array} \][/tex]
Option C does not match our derived inverse table.

D.
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 2 & -3 & -8 & -13 \\ \hline r(x) & 1 & 0 & -1 & -2 \\ \hline \end{array} \][/tex]
Option D does not match our derived inverse table.

Based on this, the correct option that represents the inverse of the given function is Option B.