Evaluate [tex]\frac{3(x+4)(x+1)}{(x+2)(x-2)}[/tex] for [tex]x=4[/tex].

A. [tex]\frac{10}{3}[/tex]
B. [tex]-\frac{10}{3}[/tex]
C. 10
D. -10



Answer :

To evaluate the expression [tex]\(\frac{3(x+4)(x+1)}{(x+2)(x-2)}\)[/tex] for [tex]\(x = 4\)[/tex]:

1. Substitute [tex]\(x = 4\)[/tex] into the expression:

[tex]\[ \frac{3(4+4)(4+1)}{(4+2)(4-2)} \][/tex]

2. Simplify the terms inside the parentheses:

[tex]\[ \frac{3(8)(5)}{(6)(2)} \][/tex]

3. Calculate the values in the numerator and the denominator:

- Numerator: [tex]\(3 \times 8 \times 5\)[/tex]
[tex]\[ 3 \times 8 = 24 \][/tex]
[tex]\[ 24 \times 5 = 120 \][/tex]
So, the numerator is 120.

- Denominator: [tex]\(6 \times 2\)[/tex]
[tex]\[ 6 \times 2 = 12 \][/tex]
So, the denominator is 12.

4. Form the simplified fraction with the values obtained:

[tex]\[ \frac{120}{12} \][/tex]

5. Divide to get the final result:

[tex]\[ \frac{120}{12} = 10 \][/tex]

The value of [tex]\(\frac{3(x+4)(x+1)}{(x+2)(x-2)}\)[/tex] when [tex]\(x = 4\)[/tex] is [tex]\(10\)[/tex]. Thus, the correct answer is:

C. [tex]\(10\)[/tex]