What is the product?

[tex]\[
(2x - 1)(x + 4)
\][/tex]

A. [tex]\(2x^2 - 4\)[/tex]

B. [tex]\(2x^2 + 4\)[/tex]

C. [tex]\(2x^2 + 7x - 4\)[/tex]

D. [tex]\(2x^2 - 7x - 4\)[/tex]



Answer :

To find the product of the binomials [tex]\( (2x - 1) \)[/tex] and [tex]\( (x + 4) \)[/tex], we can use the distributive property (also known as the FOIL method for binomials). Here's a detailed, step-by-step solution:

1. Distribute each term in the first binomial to each term in the second binomial.

[tex]\[ (2x - 1)(x + 4) \][/tex]

2. First, multiply the first terms of each binomial:

[tex]\[ 2x \cdot x = 2x^2 \][/tex]

3. Outer, multiply the outer terms of the binomials:

[tex]\[ 2x \cdot 4 = 8x \][/tex]

4. Inner, multiply the inner terms of the binomials:

[tex]\[ -1 \cdot x = -x \][/tex]

5. Last, multiply the last terms of each binomial:

[tex]\[ -1 \cdot 4 = -4 \][/tex]

6. Combine all the terms together:

[tex]\[ 2x^2 + 8x - x - 4 \][/tex]

7. Simplify by combining like terms:

[tex]\[ 2x^2 + 7x - 4 \][/tex]

Hence, the product of [tex]\( (2x-1)(x+4) \)[/tex] is:

[tex]\[ 2x^2 + 7x - 4 \][/tex]

Among the given options, the correct one is:
[tex]\[ 2x^2 + 7x - 4 \][/tex]