Answer :
To solve the equation [tex]\( 8x + 34 = y \)[/tex] for [tex]\( x \)[/tex] given a specific value for [tex]\( y \)[/tex], follow these steps:
1. Understand the Problem:
- We have the equation [tex]\( 8x + 34 = y \)[/tex], where [tex]\( y \)[/tex] is a given value.
2. Isolate [tex]\( x \)[/tex]:
- To find [tex]\( x \)[/tex], we need to isolate [tex]\( x \)[/tex] on one side of the equation. This involves solving for [tex]\( x \)[/tex].
3. Rearrange the Equation:
- Starting from [tex]\( 8x + 34 = y \)[/tex], subtract 34 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 8x = y - 34 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
- Now, divide both sides of the equation by 8 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y - 34}{8} \][/tex]
Let's put this process into action with a specific numerical value for [tex]\( y \)[/tex]. Suppose [tex]\( y = 50 \)[/tex]:
- First, substitute [tex]\( y = 50 \)[/tex] into the rearranged equation:
[tex]\[ x = \frac{50 - 34}{8} \][/tex]
- Simplify the expression inside the fraction:
[tex]\[ x = \frac{16}{8} \][/tex]
- Finally, carry out the division:
[tex]\[ x = 2.0 \][/tex]
Thus, the value of [tex]\( x \)[/tex] when [tex]\( y \)[/tex] is 50 is [tex]\( 2.0 \)[/tex].
1. Understand the Problem:
- We have the equation [tex]\( 8x + 34 = y \)[/tex], where [tex]\( y \)[/tex] is a given value.
2. Isolate [tex]\( x \)[/tex]:
- To find [tex]\( x \)[/tex], we need to isolate [tex]\( x \)[/tex] on one side of the equation. This involves solving for [tex]\( x \)[/tex].
3. Rearrange the Equation:
- Starting from [tex]\( 8x + 34 = y \)[/tex], subtract 34 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 8x = y - 34 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
- Now, divide both sides of the equation by 8 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y - 34}{8} \][/tex]
Let's put this process into action with a specific numerical value for [tex]\( y \)[/tex]. Suppose [tex]\( y = 50 \)[/tex]:
- First, substitute [tex]\( y = 50 \)[/tex] into the rearranged equation:
[tex]\[ x = \frac{50 - 34}{8} \][/tex]
- Simplify the expression inside the fraction:
[tex]\[ x = \frac{16}{8} \][/tex]
- Finally, carry out the division:
[tex]\[ x = 2.0 \][/tex]
Thus, the value of [tex]\( x \)[/tex] when [tex]\( y \)[/tex] is 50 is [tex]\( 2.0 \)[/tex].