Select the correct answer.

The endpoints of [tex]$\overline{W X}$[/tex] are [tex]$W(5,-3)$[/tex] and [tex][tex]$X(-1,-9)$[/tex][/tex].

What is the length of [tex]$\overline{W X}$[/tex]?

A. 6
B. [tex]12[/tex]
C. 16
D. [tex]2 \sqrt{3}[/tex]
E. [tex]6 \sqrt{2}[/tex]



Answer :

To find the length of the line segment [tex]\(\overline{W X}\)[/tex] where [tex]\(W\)[/tex] has coordinates [tex]\((5, -3)\)[/tex] and [tex]\(X\)[/tex] has coordinates [tex]\((-1, -9)\)[/tex], we can use the distance formula between two points in a coordinate plane. The distance formula is given by:

[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

In our case, let [tex]\((x_1, y_1) = (5, -3)\)[/tex] and [tex]\((x_2, y_2) = (-1, -9)\)[/tex]. Plugging in these values, we get:

[tex]\[ \text{Distance} = \sqrt{((-1) - 5)^2 + ((-9) - (-3))^2} \][/tex]

Simplifying the expressions within the parentheses:

[tex]\[ \text{Distance} = \sqrt{(-1 - 5)^2 + (-9 + 3)^2} \][/tex]

[tex]\[ \text{Distance} = \sqrt{(-6)^2 + (-6)^2} \][/tex]

Squaring the numbers inside the square root:

[tex]\[ \text{Distance} = \sqrt{36 + 36} \][/tex]

Combining the results:

[tex]\[ \text{Distance} = \sqrt{72} \][/tex]

We know that [tex]\(72\)[/tex] can be written as [tex]\(36 \times 2\)[/tex]:

[tex]\[ \text{Distance} = \sqrt{36 \times 2} \][/tex]

This can be further simplified:

[tex]\[ \text{Distance} = \sqrt{36} \times \sqrt{2} \][/tex]

[tex]\[ \text{Distance} = 6 \sqrt{2} \][/tex]

So, the length of [tex]\(\overline{W X}\)[/tex] is:

[tex]\[ \boxed{6 \sqrt{2}} \][/tex]