What is the equation below written as a single natural logarithm?

[tex]\[ 2(\ln 3 - \ln 5) \][/tex]

A. [tex]\(\ln 4\)[/tex]

B. [tex]\(\ln \frac{6}{5}\)[/tex]

C. [tex]\(\ln \left(\frac{3}{5}\right)^2\)[/tex]

D. [tex]\(\ln \left(\frac{8}{5}\right)\)[/tex]



Answer :

To simplify the expression [tex]\( 2(\ln 3 - \ln 5) \)[/tex] and write it as a single natural logarithm, let's use the properties of logarithms step-by-step.

1. Apply the Power Rule of Logarithms:
The power rule states that [tex]\( a \cdot \ln b = \ln(b^a) \)[/tex]. So, for the given expression [tex]\( 2(\ln 3 - \ln 5) \)[/tex], we distribute the 2 to each term inside the parentheses:
[tex]\[ 2(\ln 3) - 2(\ln 5) \][/tex]
Using the power rule, this becomes:
[tex]\[ \ln(3^2) - \ln(5^2) \][/tex]
Simplifying further, we get:
[tex]\[ \ln 9 - \ln 25 \][/tex]

2. Apply the Quotient Rule of Logarithms:
The quotient rule states that [tex]\( \ln a - \ln b = \ln \left( \frac{a}{b} \right) \)[/tex]. Applying this rule to our expression, we get:
[tex]\[ \ln \left( \frac{9}{25} \right) \][/tex]

Therefore, the expression [tex]\( 2(\ln 3 - \ln 5) \)[/tex] simplified as a single natural logarithm is:
[tex]\[ \boxed{\ln \left( \frac{9}{25} \right)} \][/tex]

So, the correct answer is [tex]\(\ln \left( \frac{9}{25} \right)\)[/tex].