Answer :
Sure! To determine the speed in different units, follow these steps:
1. Convert the speed from miles per hour to kilometers per hour:
- Given that 1 mile is equal to 1.61 kilometers, multiply the speed in miles per hour by 1.61.
- For a speed of [tex]\( 99 \frac{\text {miles}}{\text {hour}} \)[/tex]:
[tex]\[ 99 \, \text{miles/hour} \times 1.61 \, \text{km/mile} = 159.4 \, \text{km/hour} \][/tex]
2. Convert the speed from kilometers per hour to kilometers per minute:
- Since 1 hour equals 60 minutes, divide the speed in kilometers per hour by 60.
- For a speed of [tex]\( 159.4 \frac{\text {kilometers}}{\text {hour}} \)[/tex]:
[tex]\[ 159.4 \, \text{km/hour} \div 60 = 2.7 \, \text{km/minute} \][/tex]
Thus, the speed is equivalent to [tex]\(159.4 \frac{\text {kilometers}}{\text {hour}}\)[/tex], or [tex]\(2.7 \frac{\text {kilometers}}{\text {minute}}\)[/tex].
1. Convert the speed from miles per hour to kilometers per hour:
- Given that 1 mile is equal to 1.61 kilometers, multiply the speed in miles per hour by 1.61.
- For a speed of [tex]\( 99 \frac{\text {miles}}{\text {hour}} \)[/tex]:
[tex]\[ 99 \, \text{miles/hour} \times 1.61 \, \text{km/mile} = 159.4 \, \text{km/hour} \][/tex]
2. Convert the speed from kilometers per hour to kilometers per minute:
- Since 1 hour equals 60 minutes, divide the speed in kilometers per hour by 60.
- For a speed of [tex]\( 159.4 \frac{\text {kilometers}}{\text {hour}} \)[/tex]:
[tex]\[ 159.4 \, \text{km/hour} \div 60 = 2.7 \, \text{km/minute} \][/tex]
Thus, the speed is equivalent to [tex]\(159.4 \frac{\text {kilometers}}{\text {hour}}\)[/tex], or [tex]\(2.7 \frac{\text {kilometers}}{\text {minute}}\)[/tex].