Type the correct answer in each box. Use numerals instead of words.

A race car is driven by a professional driver at [tex]$99 \frac{\text{miles}}{\text{hour}}$[/tex]. What is this speed in [tex]$\frac{\text{kilometers}}{\text{hour}}$[/tex] and [tex][tex]$\frac{\text{kilometers}}{\text{minute}}$[/tex][/tex]?

1 mile = 1.61 kilometers
1 hour = 60 minutes

Round your answers to the nearest tenth.

The speed is equivalent to [tex]\square \frac{\text{kilometers}}{\text{hour}}[/tex], or [tex]\square \frac{\text{kilometers}}{\text{minute}}[/tex].



Answer :

Sure! To determine the speed in different units, follow these steps:

1. Convert the speed from miles per hour to kilometers per hour:
- Given that 1 mile is equal to 1.61 kilometers, multiply the speed in miles per hour by 1.61.
- For a speed of [tex]\( 99 \frac{\text {miles}}{\text {hour}} \)[/tex]:
[tex]\[ 99 \, \text{miles/hour} \times 1.61 \, \text{km/mile} = 159.4 \, \text{km/hour} \][/tex]

2. Convert the speed from kilometers per hour to kilometers per minute:
- Since 1 hour equals 60 minutes, divide the speed in kilometers per hour by 60.
- For a speed of [tex]\( 159.4 \frac{\text {kilometers}}{\text {hour}} \)[/tex]:
[tex]\[ 159.4 \, \text{km/hour} \div 60 = 2.7 \, \text{km/minute} \][/tex]

Thus, the speed is equivalent to [tex]\(159.4 \frac{\text {kilometers}}{\text {hour}}\)[/tex], or [tex]\(2.7 \frac{\text {kilometers}}{\text {minute}}\)[/tex].